Skip to main content
Log in

Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, “Vyon,” were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

Atrazine and simazine adsorption by untreated HDPE membranes and membranes plasmagrafted with molecular imprinted polymer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pabby AK, Sastre AM (2013) J Membrane Sci 430:263–303

    Article  CAS  Google Scholar 

  2. Baker RW (2010) J Membrane Sci 362:134–136

    Article  CAS  Google Scholar 

  3. Li M-S, Zhao Z-P, Li N, Zhang Y (2013) J Membrane Sci 427:431–442

    Article  CAS  Google Scholar 

  4. Pino M, Stingelin N, Tanner KE (2008) Acta Biomaterialia 4:1827–1836

    Article  CAS  Google Scholar 

  5. Hentze H-P, Antonietti M (2002) Porous polymers and resins for biotechnological and biomedical applications. Rev Mol Biotech 90:27–53

    Article  CAS  Google Scholar 

  6. Fritz JS, Dumont PJ, Schmidt LW (1995) J Chromatogr A 691:133–140

    Article  CAS  Google Scholar 

  7. Piletsky S, Matuschewski H, Schedler U, Wilpert A, Piletska E, Thiele T, Ulbricht M (2000) Macromolecules 33:3092–3098

    Article  CAS  Google Scholar 

  8. Sergeeva TA, Matuschewski H, Piletsky SA, Bendig J, Schedler U, Ulbricht M (2001) J Chromatogr A 907:89–99

    Article  Google Scholar 

  9. Yasuda H, Hsu T (1978) Surf Sci 76:232–241

    Article  CAS  Google Scholar 

  10. Bergbreiter D (1999) Med Res Rev 19:439–450

    Article  CAS  Google Scholar 

  11. Holmes-Farley S, Reamey R, McCarthy T, Deutch J, Whitesides G (1985) Langmuir 1:725–740

    Article  CAS  Google Scholar 

  12. Koontz S, Devivar R, Peltier W, Pearson J, Guillory T, Fabricant J (1999) Colloid Polym Sci 277:557–562

    Article  CAS  Google Scholar 

  13. Biederman H, Slavínská D (2000) Surf Coat Tech 125:371–376

    Article  CAS  Google Scholar 

  14. Aroca AS, Pradas MM, Ribelles JLG (2007) Polymer 48:2071–2078

    Article  Google Scholar 

  15. Tokuyama H, Naohara S, Fujioka M, Sakohara S (2008) React Funct Polym 68:182–188

    Article  CAS  Google Scholar 

  16. Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) Advanced Drug Delivery Reviews 57:1795–1808

    Article  CAS  Google Scholar 

  17. Breton F, Rouillon R, Piletska EV, Karim K, Guerreiro A, Chianella I, Piletsky SA (2007) Biosens Bioelectron 22:1948–1954

    Article  CAS  Google Scholar 

  18. Yaqub S, Latif U, Dickert FL (2011) Sensor Actuat B: Chem 160:227–233

    Article  CAS  Google Scholar 

  19. Sergeyeva TA, Piletska OV, Piletsky SA, Sergeeva LM, Brovko OO, El’ska GV (2008) Mat Sci Eng C 28:1472–1479

    Article  CAS  Google Scholar 

  20. Piletska EV, Turner NW, Turner APF, Piletsky SA (2005) J Control Release 108:132–139

    Article  CAS  Google Scholar 

  21. Piletskaya EV, Piletsky SA, El’skaya AV, Sozinov AA, Marty J-L, Rouillon R (1999) Anal Chem Acta 398:49–56

    Article  CAS  Google Scholar 

  22. Piletska E, Karim K, Coker R, Piletsky S (2010) J Chromatogr A 1217:2543–2547

    Article  CAS  Google Scholar 

  23. Shin K-S, Kim Y-H, Min J-A, Kwak S-M, Kim SK, Yang EG, Park J-H, Ju B-K, Kim T-S, Kang JY (2006) Anal Chim Acta 573–574:164–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Piletska.

Additional information

This paper is dedicated to Professor Franz Dickert on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowieson, D., Piletska, E., Moczko, E. et al. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization. Anal Bioanal Chem 405, 6489–6496 (2013). https://doi.org/10.1007/s00216-013-7087-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7087-7

Keywords

Navigation