Skip to main content
Log in

Non-isothermal crystallization behavior of poly(vinylidene fluoride)/ethylene–vinyl acetate copolymer blends

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Non-isothermal crystallization behavior of poly(vinylidene fluoride) (PVDF) and ethylene–vinyl acetate (EVA) copolymer and their binary blends with different blending ratios were investigated by the use of differential scanning calorimetry (DSC). With the increasing cooling rates, PVDF, EVA and their binary blends showed wide crystallization temperature range and high crystalline enthalpy. Jeziorny and Mo’s models were applied to calculate non-isothermal crystallization kinetics parameters of neat PVDF, EVA and their binary blends. By Jeziorny method, the crystallization process of neat PVDF, EVA and PVDF/EVA = 7/3 blend can be divided into two parts: primary and secondary crystallization processes. The Avrami exponent n 1 indicated that the primary crystallization process was a mixture model of three-dimensional and two-dimensional space extensions. In comparison, PVDF/EVA = 5/5 and PVDF/EVA = 3/7 blends showed a single crystallization process. Through Mo’s analysis, faster cooling rate was demanded to reach higher relative crystallinity. Crystallization rate coefficient (CRC) was used to describe the effect of crystallization rates on the interaction between PVDF and EVA. CRC reached a maximum value when the mass ratio of PVDF and EVA was 7/3. The maximum CRC values of PVDF system and EVA system were 98.1 and 179.9 h−1, respectively. The activation energy was closely related to the extent of conversion and the neat samples had a maximum value of crystallization activation energy. This was consistent with the observation for the parameters from Jeziorny analysis and could be correlated to the heterogeneous nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jian K, Pintauro PN (1997) Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations. J Membrane Sci 135:41–53

    Article  CAS  Google Scholar 

  2. Yang X, Wang R, Shi L, Fane AG, Debowski M (2011) Performance improvement of PVDF hollow fiber-based membrane distillation process. J Membrane Sci 369:437–447

    Article  CAS  Google Scholar 

  3. Bonyadi S, Chung TS (2007) Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes. J Membrane Sci 306:134–146

    Article  CAS  Google Scholar 

  4. Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26:42–50

    Article  CAS  Google Scholar 

  5. Nunes SP, Peinemann KV (1992) Ultrafiltration membranes from PVDF/PMMA blends. J Membrane Sci 73:25–35

    Article  CAS  Google Scholar 

  6. Yousefi AA (2011) Influence of polymer blending on crystalline structure of polyvinylidene fluoride. Iran Polym J 20:109–121

    CAS  Google Scholar 

  7. Cheng J, Wang S, Chen S, Zhang J, Wang X (2012) Crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate)/poly(vinyl pyrrolidone) ternary blends. Polym Int 61:477–484

    Article  CAS  Google Scholar 

  8. Chen N, Hong L (2002) Surface phase morphology and composition of the casting films of PVDF-PVP blend. Polymer 43:1429–1436

    Article  CAS  Google Scholar 

  9. Ma WZ, Zhang J, Chen SJ, Wang XL (2008) Crystallization behavior and hydrophilicity of poly (vinylidene fluoride) (PVDF)/poly (styrene-co-acrylonitrile) (SAN) blends. Colloid Polym Sci 286:1193–1202

    Article  CAS  Google Scholar 

  10. Ma W, Wang X, Zhang J (2011) Crystallization kinetics of poly(vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim 103:319–327

    Article  CAS  Google Scholar 

  11. Song J, Lu C, Xu D, Ni Y, Liu Y, Xu Z, Liu J (2010) The effect of lanthanum oxide (La2O3) on the structure and crystallization of poly(vinylidene fluoride). Polym Int 59:954–960

    Article  CAS  Google Scholar 

  12. Yu W, Zhao Z, Zheng W, Long B, Jiang Q, Li G, Ji X (2009) Crystallization behavior of poly(vinylidene fluoride)/montmorillonite nanocomposite. Polym Eng Sci 49:491–498

    Article  CAS  Google Scholar 

  13. Sung YT, Kum CK, Lee HS, Kim JS, Yoon HG, Kim WN (2005) Effects of crystallinity and crosslinking on the thermal and rheological properties of ethylene vinyl acetate copolymer. Polymer 46:11844–11848

    Article  CAS  Google Scholar 

  14. Shi XM, Zhang J, Jin J, Chen SJ (2008) Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents. Express Polym Lett 2:623–629

    Article  CAS  Google Scholar 

  15. Bianchi O, Oliveira RVB, Fiorio R, Martins JDN, Zattera AJ, Canto LB (2008) Assessment of Avrami, Ozawa and Avrami–Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test 27:722–729

    Article  CAS  Google Scholar 

  16. Bianchi O, Martins JDN, Fiorio R, Oliveira RVB, Canto LB (2011) Changes in activation energy and kinetic mechanism during EVA crosslinking. Polym Test 30:616–624

    Article  CAS  Google Scholar 

  17. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  18. Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  19. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  20. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  21. Lang MH, Zhang J (2013) Morphology and properties of poly(vinylidene fluoride) (PVDF)/ethylene–vinyl acetate copolymer (EVA) blends. Plast, Rubber Compos. doi:10.1179/1743289813Y.0000000055

    Google Scholar 

  22. Somrang N, Nithitanakul M, Grady BP, Supaphol P (2004) Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymers and ethylene–methyl acrylate–acrylic acid terpolymers. Eur Polym J 40:829–838

    Article  CAS  Google Scholar 

  23. Ji GL, Zhu BK, Zhang CF, Xu YY (2008) Nonisothermal crystallization kinetics of poly(vinylidene fluoride) in a poly(vinylidene fluoride)/dibutyl phthalate/di(2-ethylhexyl)phthalate system via thermally induced phase separation. J Appl Polym Sci 107:2109–2117

    Article  CAS  Google Scholar 

  24. Mya KY, Pramoda KP, He CB (2006) Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core. Polymer 47:5035–5043

    Article  CAS  Google Scholar 

  25. Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45:4953–4968

    Article  CAS  Google Scholar 

  26. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

  27. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    Article  CAS  Google Scholar 

  28. Khanna YP (1990) A barometer of crystallization rates of polymeric materials. Polym Eng Sci 30:1615–1619

    Article  CAS  Google Scholar 

  29. Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24:917–950

    Article  Google Scholar 

  30. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  31. Vyazovkin S (2002) Is the kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Comm 23:771–775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, M., Zhang, J. Non-isothermal crystallization behavior of poly(vinylidene fluoride)/ethylene–vinyl acetate copolymer blends. Iran Polym J 22, 821–831 (2013). https://doi.org/10.1007/s13726-013-0181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-013-0181-z

Keywords

Navigation