Skip to main content
Log in

Crystallization behaviors of poly(vinylidene fluoride) and poly(methyl methacrylate)-block-poly(2-vinyl pyridine) block copolymer blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, blends of poly(vinylidene fluoride) and different contents of poly(methyl methacrylate)-block-poly(2-vinyl pyridine) block copolymer (BCP) (PMMA-b-P2VP) are prepared by solution mixing. The phase separation and crystallization behaviors of PVDF and PMMA-b-P2VP blends were characterized by X-ray scattering from small angle to wide angle at different annealing temperatures. The non-isothermal crystallization kinetics of the blends is investigated by differential scanning calorimetry (DSC). During the non-isothermal cooling process, PVDF in blends has higher onset crystallization temperature than that of pure PVDF, which may be attributed to a weak phase separation seen from X-ray scattering patterns, in favor of the nucleation of PVDF. A unique crystallization behavior in DSC test is that as the PVDF content in the blends is dispersed as 30 mass%, degree of crystallinity turns out to be the highest among the blends, even higher than PVDF itself, although the crystallization rate is decreasing with the BCP content. By a novel treatment of dividing the X t  ~ t plot to three stages, it can be found that the relative degree of crystallinity at the end of nucleation process can be responsible for the unusual crystallization behavior. Incorporation of BCP definitely increases the hydrophilic property of PVDF materials by water contact angle test. Understanding of PVDF crystallization in the system with BCP guides the further development of high-performance PVDF membrane materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kang G, Cao Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—a review. J Membr Sci. 2014;463:145–65.

    Article  CAS  Google Scholar 

  2. Liu F, Hashim NA, Liu Y, Abed MM, Li K. Progress in the production and modification of PVDF membranes. J Membr Sci. 2011;375(1):1–27.

    Article  CAS  Google Scholar 

  3. Rana D, Matsuura T. Surface modifications for antifouling membranes. Chem Rev. 2010;110(4):2448–71.

    Article  CAS  Google Scholar 

  4. Ma W, Zhang J, Wang X. Crystallization and surface morphology of poly(vinylidene fluoride)/poly(methylmethacrylate) films by solution casting on different substrates. Appl Surf Sci. 2008;254(10):2947–54.

    Article  CAS  Google Scholar 

  5. Dhevi DM, Prabu AA, Pathak M. Miscibility, crystallization and annealing studies of poly(vinylidene fluoride)/hyperbranched polyester blends. Polymer. 2014;55(3):886–95.

    Article  Google Scholar 

  6. Chiu H-J. Spherulitic morphology and crystallization kinetics of poly(vinylidene fluoride)/poly(vinyl acetate) blends. J Polym Res. 2002;9(3):169–74.

    Article  CAS  Google Scholar 

  7. Lee J-C, Tazawa H, Ikehara T, Nishi T. Miscibility and crystallization behavior of poly (butylene succinate) and poly (vinylidene fluoride) blends. Polym J. 1998;30(4):327–39.

    Article  CAS  Google Scholar 

  8. Varga J, Menyhárd A. Crystallization, melting and structure of polypropylene/poly (vinylidene-fluoride) blends. J Therm Anal Calorim. 2003;73(3):735–43.

    Article  CAS  Google Scholar 

  9. Rajasekhar T, Trinadh M, Babu PV, Sainath AVS, Reddy AVR. Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. J Membr Sci. 2015;481:82–93.

    Article  CAS  Google Scholar 

  10. Du CH, Ma XM, Wu CJ, Cai MQ, Wu LG. Synthesis of a poly(methyl methacrylate)-b-poly 2-(N,N-dimethylamino) ethyl methacrylate Block copolymer and its effects on the surface charges and pH-responsive properties of poly(vinylidene fluoride) blend membranes. J Appl Polym Sci. 2014;131(17). doi:10.1002/app.40685.

  11. Sun HX, Wang TT, Zhou YY, Li P, Kong Y. Synthesis of well-defined amphiphilic block copolymers via AGET ATRP used for hydrophilic modification of PVDF membrane. J Appl Polym Sci. 2015;132(24). doi:10.1002/app.42080.

  12. Tu K, Shen P, Li J, Fan B, Yang CY, Du RX. Preparation of enduringly antifouling PVDF membrane with compatible zwitterionic copolymer via thermally induced phase separation. J Appl Polym Sci. 2015;132(7). doi:10.1002/app.41362.

  13. Ruzette A-V, Leibler L. Block copolymers in tomorrow’s plastics. Nat Mater. 2005;4(1):19–31.

    Article  CAS  Google Scholar 

  14. Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J Membr Sci. 2009;334(1):117–22.

    Article  CAS  Google Scholar 

  15. Yoo SI, Yun S-H, Choi JM, Sohn B-H, Zin W-C, Jung JC, et al. Nanoscale localization of poly(vinylidene fluoride) in the lamellae of thin films of symmetric polystyrene–poly(methyl methacrylate) diblock copolymers. Polymer. 2005;46(11):3776–81.

    Article  CAS  Google Scholar 

  16. Choi WH, Jo WH. Preparation of new proton exchange membrane based on self-assembly of poly(styrene-co-styrene sulfonic acid)-b-poly(methyl methacrylate)/poly(vinylidene fluoride) blend. J Power Sourc. 2009;188(1):127–31.

    Article  CAS  Google Scholar 

  17. Winey KI, Thomas EL, Fetters LJ. Isothermal morphology diagrams for binary blends of diblock copolymer and homopolymer. Macromolecules. 1992;25(10):2645–50.

    Article  CAS  Google Scholar 

  18. Higuchi T, Sugimori H, Jiang X, Hong S, Matsunaga K, Kaneko T, et al. Morphological control of helical structures of an ABC-type triblock terpolymer by distribution control of a blending homopolymer in a block copolymer microdomain. Macromolecules. 2013;46(17):6991–7.

    Article  CAS  Google Scholar 

  19. Hsu J-Y, Nandan B, Chen M-C, Chiu F-C, Chen H-L. Correlation between crystallization kinetics and melt phase behavior of crystalline–amorphous block copolymer/homopolymer blends. Polymer. 2005;46(25):11837–43.

    Article  CAS  Google Scholar 

  20. Wan L-S, Delgadillo PAR, Gronheid R, Nealey PF. Directed self-assembly of ternary blends of block copolymer and homopolymers on chemical patterns. J Vac Sci Technol, B. 2013;31(6):06F301.

    Article  Google Scholar 

  21. Cheng J, Zhang J, Wang X. Investigation on crystallization behavior and hydrophilicity of poly (vinylidene fluoride)/poly (methyl methacrylate)/poly (vinyl pyrrolidone) ternary blends by solution casting. J Appl Polym Sci. 2013;127(5):3997–4005.

    Article  CAS  Google Scholar 

  22. Cheng J, Wang S, Chen S, Zhang J, Wang X. Crystallization behavior and hydrophilicity of poly (vinylidene fluoride)/poly (methyl methacrylate)/poly (vinyl pyrrolidone) ternary blends. Polym Int. 2012;61(3):477–84.

    Article  CAS  Google Scholar 

  23. Meng Q, Li W, Zheng Y, Zhang Z. Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J Appl Polym Sci. 2010;116(5):2674–84.

    CAS  Google Scholar 

  24. Ma W, Chen S, Zhang J, Wang X. Crystallization behavior and hydrophilicity of poly (vinylidene fluoride)(PVDF)/poly (methylmethacrylate)(PMMA)/poly (styrene-co-acrylonitrile)(SAN) ternary blends. Colloid Polym Sci. 2009;287(2):147–55.

    Article  CAS  Google Scholar 

  25. Yu P-Q, Yan L-T, Chen N, Xie X-M. Confined crystallization behaviors and phase morphologies of PVCH-PE-PVCH/PE homopolymer blends. Polymer. 2012;53(21):4727–36.

    Article  CAS  Google Scholar 

  26. Loo Y-L, Register RA, Ryan AJ. Modes of crystallization in block copolymer microdomains: breakout, templated, and confined. Macromolecules. 2002;35(6):2365–74.

    Article  CAS  Google Scholar 

  27. Sasaki H, Bala PK, Yoshida H, Ito E. Miscibility of PVDF/PMMA blends examined by crystallization dynamics. Polymer. 1995;36(25):4805–10.

    Article  CAS  Google Scholar 

  28. Kuo SW, Wu CH, Chang FC. Thermal properties, interactions, morphologies, and conductivity behavior in blends of poly(vinylpyridine)s and zinc perchlorate. Macromolecules. 2004;37(1):192–200.

    Article  CAS  Google Scholar 

  29. Naidu S, Ahn H, Gong J, Kim B, Ryu DY. Phase behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine) copolymer. Macromolecules. 2011;44(15):6085–93.

    Article  CAS  Google Scholar 

  30. Rubatat L, Shi Z, Diat O, Holdcroft S, Frisken BJ. Structural study of proton-conducting fluorous block copolymer membranes. Macromolecules. 2006;39(2):720–30.

    Article  CAS  Google Scholar 

  31. Lee JK, Kim JS, Lim HJ, Lee KH, Jo SM, Ougizawa T. Microphase separation and crystallization in mixtures of polystyrene–poly (methyl methacrylate) diblock copolymer and poly (vinylidene fluoride). Polymer. 2006;47(15):5420–8.

    Article  CAS  Google Scholar 

  32. Han SH, Kim JK. Temperature-dependent interaction parameters of poly(methyl methacrylate)/poly(2-vinyl pyridine) and poly(methyl methacrylate)/poly(4-vinyl pyridine) pairs. React Funct Polym. 2009;69(7):493–7.

    Article  CAS  Google Scholar 

  33. Mano JF, Wang Y, Viana JC, Denchev Z, Oliveira MJ. Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromol Mater Eng. 2004;289(10):910–5.

    Article  CAS  Google Scholar 

  34. Ji G-L, Zhu B-K, Zhang C-F, Xu Y-Y. Nonisothermal crystallization kinetics of poly(vinylidene fluoride) in a poly(vinylidene fluoride)/dibutyl phthalate/di(2-ethylhexyl)phthalate system phase separation. J Appl Polym Sci. 2008;107(4):2109–17.

    Article  CAS  Google Scholar 

  35. Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J Therm Anal Calorim. 2015;121(3):1321–32.

    Article  CAS  Google Scholar 

  36. Gaur M, Singh PK, Ali A, Singh R. Thermally stimulated discharge current (TSDC) characteristics in β-phase PVDF–BaTiO3 nanocomposites. J Therm Anal Calorim. 2014;117(3):1407–17.

    Article  CAS  Google Scholar 

  37. Ma W, Zhang J, Wang X, Wang S. Effect of PMMA on crystallization behavior and hydrophilicity of poly (vinylidene fluoride)/poly (methyl methacrylate) blend prepared in semi-dilute solutions. Appl Surf Sci. 2007;253(20):8377–88.

    Article  CAS  Google Scholar 

  38. Di Lorenzo M, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.

    Article  Google Scholar 

  39. Chen J, Wang X, Liu W. Crystallization kinetics of polyethylene/paraffin oil blend sheets formed by thermally induced phase separation with different molecular weights of polyethylene. J Therm Anal Calorim. 2014;118(3):1649–61.

    Article  CAS  Google Scholar 

  40. Tao Y, Mai K. Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly (ethylene terephthalate) blends. Eur Polym J. 2007;43(8):3538–49.

    Article  CAS  Google Scholar 

  41. Bahader A, Gui HG, Li Y, Xu P, Ding YS. Crystallization kinetics of PVDF filled with multi wall carbon nanotubes modified by amphiphilic ionic liquid. Macromol Res. 2015;23(3):273–83.

    Article  CAS  Google Scholar 

  42. Liang CL, Mai ZH, Xie Q, Bao RY, Yang W, Xie BH et al. Crystallization kinetics of gamma phase poly(vinylidene fluoride) (PVDF) induced by tetrabutylammonium bisulfate. J Polym Res. 2014;21(12):1–8.

    Article  Google Scholar 

  43. Lopes AC, Ferreira JCC, Costa CM, Lanceros-Méndez S. Crystallization kinetics of montmorillonite/poly(vinylidene fluoride) composites and its correlation with the crystalline polymer phase formation. Thermochim Acta. 2013;574:19–25.

    Article  CAS  Google Scholar 

  44. Pan PJ, Shan GR, Bao YZ. Enhanced nucleation and crystallization of poly(L-lactic acid) by immiscible blending with poly(vinylidene fluoride). Ind Eng Chem Res. 2014;53(8):3148–56.

    Article  CAS  Google Scholar 

  45. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  46. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38(13):3151–212.

    Article  CAS  Google Scholar 

  47. Abolhasani M, Jalali-Arani A, Nazockdast H, Guo Q. Poly (vinylidene fluoride)-acrylic rubber partially miscible blends: crystallization within conjugated phases induce dual lamellar crystalline structure. Polymer. 2013;54(17):4686–701.

    Article  CAS  Google Scholar 

  48. Abolhasani MM, Naebe M, Guo Q. A new approach for mechanisms of ferroelectric crystalline phase formation in PVDF nanocomposites. Phys Chem Chem Phys. 2014;16(22):10679–87.

    Article  CAS  Google Scholar 

  49. Abolhasani MM, Abadchi MR, Magniez K, Guo Q. Different thermal analysis technique application in determination of fold surface-free energy. J Therm Anal Calorim. 2015;119(1):527–36.

    Article  CAS  Google Scholar 

  50. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  51. Wunderlich B. The growth of crystal. Macromol Phys. 1976;2:115–347.

    Article  Google Scholar 

  52. Chen L, Jiang J, Wei L, Wang X, Xue G, Zhou D. Confined nucleation and crystallization kinetics in lamellar crystalline-amorphous diblock copolymer poly (ε-caprolactone)-b-poly (4-vinylpyridine). Macromolecules. 2015;48(6):1804–12.

    Article  CAS  Google Scholar 

  53. Elashmawi IS, Hakeem NA. Effect of PMMA addition on characterization and morphology of PVDF. Polym Eng Sci. 2008;48(5):895–901.

    Article  CAS  Google Scholar 

  54. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.

    Article  CAS  Google Scholar 

  55. Zhu Y, Liang C, Bo Y, Xu S. Non-isothermal crystallization behavior of compatibilized polypropylene/recycled polyethylene terephthalate blends. J Therm Anal Calorim. 2015;119(3):2005–13.

    Article  CAS  Google Scholar 

  56. Qiu Z, Mo Z, Yu Y, Zhang H, Sheng S, Song C. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ketone ether ketone ketone). J Appl Polym Sci. 2000;77(13):2865–71.

    Article  CAS  Google Scholar 

  57. Li H, Lu X, Yang H, Hu J. Non-isothermal crystallization of P (3HB-co-4HB)/PLA blends. J Therm Anal Calorim. 2015;122(2):817–29.

    Article  CAS  Google Scholar 

  58. Perez C, Alvarez V. Non-isothermal crystallization of biodegradable polymer (MaterBi)/polyolefin (PP)/hemp fibres ternary composites. J Therm Anal Calorim. 2015;120(2):1445–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Natural Science Foundation of Jiangsu Province (BK2011807) for financial support of this work. This project is also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangjun Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, S. Crystallization behaviors of poly(vinylidene fluoride) and poly(methyl methacrylate)-block-poly(2-vinyl pyridine) block copolymer blends. J Therm Anal Calorim 125, 215–230 (2016). https://doi.org/10.1007/s10973-016-5364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5364-3

Keywords

Navigation