Skip to main content
Log in

Kinetic study of photodegradation of water soluble polymers

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The kinetic models of the photo-oxidative degradation of water-soluble polymers, as the main component of water-soluble composite films in aqueous solutions, by ultraviolet radiation and hydrogen peroxide (UV/H2O2) are developed. The rate expressions of the photochemical degradation of soluble polymers are developed based on the mass balance of the main chemical species in water. Continuous-distribution kinetics is applied for the kinetic modeling of the photo-oxidative degradation of polymers in aqueous solutions based on the population balance equations (PBEs). It is assumed that the random chain scission is the mechanism of the chain cleavage. The PBEs are solved by the moment operation which transforms the integro-differential equations into ordinary differential equations that could be readily solved to obtain the rate coefficients of the polymer photodegradation. The model predictions for the number average molecular weight and the number of chain scissions per molecules are in good agreement with the experimental data obtained from the open literature for the photodegradation of poly(ethylene glycol) by the UV/H2O2 process in aqueous solution. The results confirmed the random chain scission assumption. The sequential quadratic programming was used as an optimization technique to find the kinetic parameters that could be used for scaling-up purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

b :

UV path length (cm)

C :

Concentration (M)

\( e_{\lambda }^{\text{a}} \) :

Local volumetric rate of energy absorption (Einstein L−1 s−1)

F(k):

Objective function

I o :

UV light intensity (Einstein L−1 s−1)

k i :

Rate constant (M−1 s−1), (s−1)

K a :

Equilibrium constant

m :

Parameter indicating the shape of scission fragment distribution

M n :

Number average molecular weight (g mol−1)

p (n) :

The nth moment of p(x,t)

p(x):

Polymer chain of molecular weight x

p(x,t):

Molecular weight distribution of the polymer of molecular weight x

r(x,t):

Molecular weight distribution of the radical of molecular weight x

R\( ^{\cdot}\)(x):

Polymer radical of molecular weight x

S :

Number of chain scission per molecule

T :

Time (s)

x :

Molecular weight (g mol−1)

y i :

Simulated data points

y i,m :

Experimental data points

AOT:

Advanced oxidation technology

LCA:

Long chain scission

MW:

Molecular weight

MWD:

Molecular weight distribution

PBE:

Population balance equation

PEG:

Poly(ethylene glycol)

SQP:

Sequential quadratic programming

TIC:

Theil’s inequality coefficient

UV:

Ultraviolet

\( \Upgamma \) :

Gamma function

\( \varphi \) :

Quantum yield (mol Einstein−1)

\( \Upomega (x,x^{\prime}) \) :

Stoichiometric kernel function for fragmentation process

\( \varepsilon \) :

Molar extinction coefficient (M−1 cm−1)

References

  1. Kakishita O, Nishioka J, Fugita T, Matsuo K (1996) Water-soluble composite film. US Patent 5,487,947

  2. Swift G (1994) Water-soluble polymers. Polym Degrad Stab 45:215–231

    Article  CAS  Google Scholar 

  3. Swift G (1993) Directions for environmentally biodegradable polymer research. Acc Chem Res 26:105–110

    Article  CAS  Google Scholar 

  4. Poyatos JM, Munio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204

    Article  CAS  Google Scholar 

  5. Glaze WH, Kang JW, Chapin DH (1987) Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352

    Article  CAS  Google Scholar 

  6. Tabrizi GB, Mehrvar M (2004) Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances. J Environ Sci Heal A 39:3029–3081

    Article  Google Scholar 

  7. Mohajerani M, Mehrvar M, Ein-Mozaffari F (2010) CFD modeling of metronidazole degradation in water by UV/H2O2 process in single and multi-lamp photoreactors. Ind Eng Chem Res 49:5367–5382

    Article  CAS  Google Scholar 

  8. Edalatmanesh M, Mehrvar M, Dhib R (2008) Optimization of phenol degradation in a combined photochemical-biological wastewater treatment system. Chem Eng Res Des 86:1243–1252

    Article  CAS  Google Scholar 

  9. Johnson MB, Mehrvar M (2008) Aqueous metronidazole degradation by UV/H2O2 process in single- and multi-lamp tubular photoreactors: kinetics and reactor design. Ind Eng Chem Res 47:6525–6537

    Article  CAS  Google Scholar 

  10. Ball BR, Brix KV, Brancato MS, Allison MP, Vail SM (1997) Whole effluent toxicity reduction by ozone. Environ Prog 16:121–124

    Article  CAS  Google Scholar 

  11. Kang JW, Hoffmann MR (1998) Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone. Environ Sci Technol 32:3194–3199

    Article  CAS  Google Scholar 

  12. Beltran FJ (2003) Ozone–UV radiation–hydrogen peroxide oxidation technologies. In: Chemical degradation methods for wastes and pollutants. Tarr MA (ed) Marcel & Dekker. New York, Ch. 1, pp 1–76

  13. Crittenden JC, Hu S, Hand DW, Green SA (1999) A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Res 33:2315–2328

    Article  CAS  Google Scholar 

  14. Buxton GV, Greenstock CL, Helman WP, Ross ABJ (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–884

    Article  CAS  Google Scholar 

  15. Christensen H, Sehested K, Corfitzen H (1982) Reaction of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J Phys Chem 86:1588–1590

    Article  CAS  Google Scholar 

  16. Koppenol WH, Butler J, Van Leeuwen JW (1978) The Haber–Weiss cycle. Photochem Photobiol 28:655–660

    Article  CAS  Google Scholar 

  17. Weinstein J, Bielski BHJ (1979) Kinetics of the interaction of HO2 and O2 radicals with hydrogen peroxide: the Haber-Weiss reaction. J Am Chem Soc 101:58–62

    Article  CAS  Google Scholar 

  18. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1051

    Article  CAS  Google Scholar 

  19. Elliot AJ, Buxton GV (1992) Temperature dependence of the reactions OH + O2 and OH + HO2 in water up to 200 °C. J Chem Soc, Faraday Trans 88:2465–2470

    Article  CAS  Google Scholar 

  20. Beck F (1969) Detection of charged intermediate of pulse radiolysis by electrical conductivity measurements. Int J Radiat Phys Chem 1:361–371

    Article  CAS  Google Scholar 

  21. Perry RH, Green DW, Maloney JD (1981) Perry's Chemical Engineer’s Handbook. McGraw-Hill, New York, Ch.7

  22. Kodera Y, McCoy JB (1997) Distribution kinetics of radical mechanisms: reversible polymer decomposition. AIChE J 43:3205–3214

    Article  CAS  Google Scholar 

  23. Rice FO, Herzfeld KF (1939) The mechanism of some chain reactions. J Chem Phys 7:671–674

    Article  CAS  Google Scholar 

  24. Reich L, Stivala SS (1971) Various types of polymer degradation. In: Reich L, Stivala SS (eds) Elements of polymer degradation. McGraw Hill, New York, Ch. 1

  25. Kossiakoff A, Rice FO (1943) Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals. J Am Chem Soc 65:590–595

    Article  CAS  Google Scholar 

  26. Gavalas GR (1966) The long chain approximation in free radical reaction systems. Chem Eng Sci 21:133–142

    Article  Google Scholar 

  27. Nigam A, Fake DM, Klein MT (1994) A simple approximate rate law for both short-and long-chain Rice Herzfeld kinetics. AIChE J 40:908–910

    Article  CAS  Google Scholar 

  28. McCoy B, Madras G (1997) Degradation kinetics of polymers in solution—dynamics of molecular-weight distributions. AIChE J 43:802–810

    Article  CAS  Google Scholar 

  29. Smagala TG, McCoy BJ (2003) Mechanisms and approximations in macromolecular reactions: reversible initiation, chain scission, and hydrogen abstraction. Ind Eng Chem Res 42:2461–2469

    Article  CAS  Google Scholar 

  30. Sezgi NA, Cha WS, Smith JM, McCoy BJ (1998) Polyethylene pyrolysis: theory and experiments for molecular-weight-distribution kinetics. Ind Eng Chem Res 37:2582–2591

    Article  CAS  Google Scholar 

  31. McCoy BJ, Wang M (1994) Continuous-mixture fragmentation kinetics: particle size reduction and molecular cracking. Chem Eng Sci 49:3773–3785

    Article  CAS  Google Scholar 

  32. Konaganti VK, Madras G (2009) Photooxidative and pyrolytic degradation of methyl methacrylate-alkyl acrylate copolymers. Polym Degrad Stab 94:1325–1335

    Article  CAS  Google Scholar 

  33. Madras G, Chung GY, Smith JM, McCoy BJ (1997) Molecular weight effect on the dynamics of polystyrene degradation. Ind Eng Chem Res 36:2019–2024

    Article  CAS  Google Scholar 

  34. Audenaert WTM, Vermeersch Y, Van Hulle SWH, Dejans P, Dumoulin A, Nopens I (2011) Application of a mechanistic UV/hydrogen peroxide model at full-scale: sensitivity analysis, calibration and performance evaluation. Chem Eng J 171:113–126

    Article  CAS  Google Scholar 

  35. McCoy B, Madras G (2001) Discrete and continuous models for polymerization and depolymerization. Chem Eng Sci 56:2831–2836

    Article  CAS  Google Scholar 

  36. Madras G, Smith JM, McCoy BJ (1996) Thermal degradation of poly(α-methylstyrene) in solution. Polym Degrad Stab 52:349–358

    Article  CAS  Google Scholar 

  37. Santos LC, Poli AL, Cavalheiro CCS, Neumann MG (2009) The UV/H2O2 photodegradation of poly(ethylene glycol) and model compounds. J Braz Chem Soc 20:1467–1472

    Article  CAS  Google Scholar 

  38. Sterling JW, McCoy BJ (2001) Distribution kinetics of thermolytic macromolecular reactions. AIChE J 47:2289–2303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Natural Sciences and Engineering Research Council of Canada (NSERC) and Ryerson University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mehrvar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafoori, S., Mehrvar, M. & Chan, P.K. Kinetic study of photodegradation of water soluble polymers. Iran Polym J 21, 869–876 (2012). https://doi.org/10.1007/s13726-012-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0091-5

Keywords

Navigation