Skip to main content
Log in

Photochemical Kinetic Modeling of Degradation of Aqueous Polyvinyl Alcohol in a UV/H2O2 Photoreactor

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study presents a photochemical kinetics model to describe the degradation of water-soluble PVA (Polyvinyl Alcohol) polymer in a UV/H2O2 batch reactor. Under the effect of UV light, the photolysis of hydrogen peroxide into hydroxyl radicals can generate a series of polymer scission reactions. For a better understanding and analysis of the UV/H2O2 process in the cracking of the PVA macromolecules, a chemical reaction mechanism of the degradation process and a relevant photochemical kinetics model are developed to describe the disintegration of the polymer chains. Taking into account the probabilistic fragmentation of the polymer, the statistical moment approach is used to model the molar population balance of live and dead polymer chains. The model predicts the PVA molecular weight reduction, the acidity of the solution, and hydrogen peroxide residual. In addition to previously published data collected in this laboratory, a new set of experiments were conducted using a 500 mg/L PVA aqueous for different hydrogen peroxide/PVA ratios for model validation. Measurements of average molecular weights of the polymer, hydrogen peroxide concentrations and pH of the PVA solution were determinant factors in constructing a reliable photochemical model of the UV/H2O2 process. Experimental data showed a decrease in the PVA molecular weight and a buildup of the solution acidity. The experimental data also served to determine the kinetics rate constants of the PVA photochemical degradation and validate the model whose predictions are in good agreement with data. The model can provide a comprehensive understanding of the impact of the design and operational variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aarthi T, Shaama M, Madras G (2007) Ind Eng Chem Res 46:6204–6210

    Article  CAS  Google Scholar 

  2. Tayal A, Khan S (2000) Macromol 33:9488–9493

    Article  CAS  Google Scholar 

  3. Swift G (1997) Polym Degrad Stab 59:19–24

    Article  Google Scholar 

  4. Alfano O, Cassano A (2009) Scaling-up of photoreactors: applications to advanced oxidation processes. INTRC Publishers, Massachusetts, 229–286

    Google Scholar 

  5. Mohajerani M, Mehrvar M, Ein-Mozaffari F (2009) Int J Eng 3:120–146

    Google Scholar 

  6. Hamad D, Dhib R, Mehrvar M (2016) J Polym Environ 24:72–83

    Article  CAS  Google Scholar 

  7. Ghafoori S, Mehrvar M, Chan PS (2012) Ind Eng Chem Res 51:14980–14993

    Article  CAS  Google Scholar 

  8. Santos L, Poli A, Cavalheiro C, Neumann M (2009) J Braz Chem Soc 20:1467–1472

    Article  CAS  Google Scholar 

  9. McCoy B, Madras G (2001) Chem Eng Sci 56:2831–2836

    Article  CAS  Google Scholar 

  10. Solaro A, Corti A, Chillini E (2000) Polym Adv Technol 11:873–878

    Article  CAS  Google Scholar 

  11. Ghafoori S, Mehrvar M, Chan P (2011) Chem Eng J 245:133–142

    Article  CAS  Google Scholar 

  12. Hamad D, Mehrvar M, Dhib R (2014) Polym Degrad Stab 103:75–82

    Article  CAS  Google Scholar 

  13. Hamad D, Dhib R, Mehrvar M (2016) Environ Technol 37(21):2731–2742

    Article  CAS  PubMed  Google Scholar 

  14. Christensen H, Sehested K, Corfitzen H (1982) J Phys Chem 86:1588–1590

    Article  CAS  Google Scholar 

  15. Buxton G, Greenstock C, Helman W, Ross A (1988) Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  16. Liao C, Gurol M (1995) Environ Sci Technol 29:3007–3014

    Article  CAS  PubMed  Google Scholar 

  17. Crittenden JC, Hu S, Hand DW, Green SA (1999) Water Res 33:2315–2328

    Article  CAS  Google Scholar 

  18. Weinstein J, Bielski B (1979) Am Chem Soc 101:58–62

    Article  CAS  Google Scholar 

  19. Bielski B, Cabelli D (1991) Int J Radiat Bio 59:291–319

    Article  CAS  Google Scholar 

  20. Elliot A, Buxton G (1992) Chem Soc 88:2465–2470

    CAS  Google Scholar 

  21. Linden K, Sharpless C, Andrews S, Atasi K, Korategere V, Stefan M, Suffet I (2005) Innovative UV technologies to oxidize organic and organoleptic chemicals. IWA Publishing, London

    Google Scholar 

  22. Whittmann G, Horvath I, Dombi A (2002) Ozone Sci Eng 24:281–291

    Article  Google Scholar 

  23. Kodera Y, McCoy B (1997) AIChE J 3205–3214

  24. Metha K, Madras G (2001) Am Inst Chem Eng J47:2539–2545

    Google Scholar 

  25. Smagala T, McCoy B (2003) Ind Eng Chem Res 42:2461–2469

    Article  CAS  Google Scholar 

  26. Peng Z, Kong LX (2007) Polym Degrad Stab 92:1061–1071

    Article  CAS  Google Scholar 

  27. Taghizadeh MT, Yeganeh N, Rezaei M (2015) J Appl Polym Sci 32(25):42117–42129

    Google Scholar 

  28. Romero R, Alfano O, Cassano A (1997) Ind Eng Chem Res 36:3094–3109

    Article  CAS  Google Scholar 

  29. Sterling J, McCoy B (2001) AIChE J 47:2289–2303

    Article  CAS  Google Scholar 

  30. Hulburt H, Katz S (1964) Chem Eng Sci 19:555–574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Ryerson University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramdhane Dhib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, D., Mehrvar, M. & Dhib, R. Photochemical Kinetic Modeling of Degradation of Aqueous Polyvinyl Alcohol in a UV/H2O2 Photoreactor. J Polym Environ 26, 3283–3293 (2018). https://doi.org/10.1007/s10924-018-1190-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1190-y

Keywords

Navigation