Skip to main content
Log in

Effect of single-walled carbon nanotubes on morphology and mechanical properties of NBR/PVC blends

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Dynamically vulcanized thermoplastic elastomer based on Nitrile butadiene-rubber (NBR)/PVC with functionalized single-walled carbon nanotubes (f-SWNTs) and non-functionalized single-walled carbon nanotubes (SWNTs) were prepared using a brabender internal mixer. Effects of two types of SWNTs (functionalized and non-functionalized) on morphology and mechanical properties of NBR/PVC blends were studied. Results showed that the mechanical properties of NBR/PVC/SWNTs nanocomposites improved with the increasing of SWNTs content and in particular with the increase of f-SWNTs content. Moreover, the enhancement of mechanical properties of NBR/PVC blends reinforced with functionalized SWNT was higher than that of NBR/PVC blends with non-functionalized SWNT. Dispersion of SWNTs and morphology of NBR/PVC/SWNT nanocomposites were determined by scanning electron microscopy and transmission electron microscopy (TEM) techniques. TEM images illustrated that f-SWNTs were dispersed uniformly in NBR/PVC matrix while non-functionalized SWNTs showed much aggregation. Dynamic mechanical thermal analysis of NBR/PVC/SWNTs nanocomposites was also studied. The outcomes indicated that in the case of f-SWNTs, the intensity of tan δ peak was lower than that in the case of non-functionalized SWNTs. Meanwhile, the intensity of tan δ peak reduced when the content of f-SWNTs was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Esmizadeh E, Naderi G, Ghoreishy MHR, Bakhshandeh GR (2011) Optimal parameter design by Taguchi method for mechanical properties of NBR/PVC nanocomposites. Iran Polym J 20:587–596

    CAS  Google Scholar 

  2. Shokri AA, Bakhshandeh GR, Darestani Farahani T (2006) An investigation of mechanical and rheological properties of NBR/PVC blends: Influence of anhydride additives, mixing procedure and NBR form. Iran Polym J 15:227–237

    CAS  Google Scholar 

  3. Li H, Wang L, Song G, Gu Zh, Li P, Zhang Ch, Gao L (2010) Study of NBR/PVC/OMMT nanocomposites prepared by mechanical blending. Iran Polym J 19:39–46

    CAS  Google Scholar 

  4. Hafezi M, Nouri Khorasani S, Ziaei SF (2006) Application of Taguchi method in determining optimum level of curing system of NBR/PVC blend. J Appl Polym Sci 102:5358–5362

    Article  CAS  Google Scholar 

  5. Ishiaku US, Lim FS, Mohd ZA (1999) Mechanical properties and thermooxidative aging of a ternary blend, PVC/ENR/NBR, compared with the binary blends of PVC. Polym Plast Technol Eng 38:939–954

    Article  CAS  Google Scholar 

  6. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  7. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  CAS  Google Scholar 

  8. Fischer JE, Dai H, Thess A, Lee R, Hanjani NM, Dehaas DL (1997) Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys Rev B 55:4921–4924

    Article  Google Scholar 

  9. Akbar S, Beyou E, Cassagnau P, Chaumont P, Farzi G (2009) Radical grafting of polyethylene onto MWCNTs: a model compound approach. Polymer 50:2535–2543

    Article  CAS  Google Scholar 

  10. Fragneaud B, Masenelli-Varlot K, Gonzalez-Montiel A, Terrones M, Cavaille JY (2007) Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using N-doped carbon nanotubes. Chem Phys Lett 444:1–8

    Article  CAS  Google Scholar 

  11. Fragneaud B, Masenelli-Varlot K, Gonzalez-Montiel A, Terrones M, Cavaille JY (2008) Mechanical behavior of polystyrene grafted carbon nanotube/polystyrene nanocomposites. Compos Sci Technol 68:3265–3271

    Article  CAS  Google Scholar 

  12. Masenelli-Varlot K, Chazeau L, Gauthier C, Bogner A, Cavaille JY (2009) The relationship between the electrical and mechanical properties of polymer–nanotube nanocomposites and their microstructure. Compos Sci Technol 69:1533–1539

    Article  CAS  Google Scholar 

  13. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645

    Article  CAS  Google Scholar 

  14. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395–403

    Article  CAS  Google Scholar 

  15. Schadler LS, Giannaris SC, Ajayana PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844

    Article  CAS  Google Scholar 

  16. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube–polymer composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  17. Ruan SL, Gao P, Yang XG, Yu TX (2003) Toughening high performance ultra high molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44:5643–5654

    Article  CAS  Google Scholar 

  18. Cataldo F (2000) The role of fullerene-like structures in carbon black and their interaction with dienic rubber. Fullerene Sci Technol 8:105–112

    Article  CAS  Google Scholar 

  19. Ginzburg VV, Gendelman OV, Manevitch LI (2001) Simple “kink” model of melt intercalation in polymer–clay nanocomposites. Phys Rev Lett 86:5073–5075

    Article  CAS  Google Scholar 

  20. Pan H, Liu L, Guo ZX, Dai L, Zhang F, Zhu D (2003) Carbon nanotubols from mechanochemical reaction. Nano Lett 3:29–32

    Article  CAS  Google Scholar 

  21. Wang Z, Liu C, Liu Z, Xiang H, Li Z, Gong Q (2005) p–p Interaction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites. Chem Phys Lett 407:35–39

    Article  CAS  Google Scholar 

  22. Zhang WD, Shen L, Phang IY, Liu T (2004) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256–259

    Article  CAS  Google Scholar 

  23. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube–polymer interface. Polymer 44:7757–7764

    Article  CAS  Google Scholar 

  24. Zhang Z, Zhang J, Chen P, Zhang B, He J, Hu GH (2006) Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon 44:692–698

    Article  CAS  Google Scholar 

  25. Grassie N, Heaney A (1974) Thermal degradation of copolymers of butadiene and acrylonitrile. Eur Polym J 10:415–424

    Article  CAS  Google Scholar 

  26. Budrugeac P (1992) Thermooxidative degradation of some nitrile-butadiene rubbers. Polym Degrad Stab 38:165–172

    Article  CAS  Google Scholar 

  27. Budrugeac P (1995) Accelerated thermal ageing of nitrile-butadiene rubber under air pressure. Polym Degrad Stab 47:129–132

    Article  CAS  Google Scholar 

  28. Vaisman L, Wachtel E, Wagner HD, Marom G (2007) Polymer–nanoinclusion interactions in carbon nanotube based polyacrylonitrile extruded and electrospun fibers. Polymer 48:6843–6854

    Article  CAS  Google Scholar 

  29. Zhao Q, Tannenbaum R, Jacob KI (2006) Carbon nanotubes as Raman sensors of vulcanization in natural rubber. Carbon 44:1740–1745

    Article  CAS  Google Scholar 

  30. Supri M, Ismail H (2006) Effects of dynamic vulcanization and glycidyl methacrylate on properties of recycled poly (vinyl chloride)/acrylonitrile butadiene rubber blends. Polym Test 25:318–326

    Article  CAS  Google Scholar 

  31. Carlier V, Sclavons M, Jonas AM, Jerome R, Legras R (2001) Probing thermoplastic matrix-carbon fiber interphases. 1. Preferential segregation of low molar mass chains to the interface. Macromolecules 34:3725–3729

    Article  CAS  Google Scholar 

  32. Pospisil J, Horak Z, Krulis Z, Nespurek S, Kuroda SI (1999) Degradation and aging of polymer blends I. Thermomechanical and thermal degradation. Polym Degrad Stab 65:405–414

    Article  CAS  Google Scholar 

  33. McNeill IC (1997) Thermal degradation of polystyrene in different environments. Angew Makromol Chem 247:179–195

    Article  CAS  Google Scholar 

  34. Peeterbroeck S, Laoutid F, Swoboda B, Lopez-Cuesta JM, Moreau N, Nagy JB (2007) How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites? Macromol Rapid Commun 28:260–264

    Article  CAS  Google Scholar 

  35. Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB (2006) Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med 40:1227–1233

    Article  CAS  Google Scholar 

  36. Lu L, Zhou Z, Zhang Y, Wang S, Zhang Y (2007) Reinforcement of styrene–butadiene–styrene tri block copolymer by multi-walled carbon nanotubes via melt mixing. Carbon 45:2621–2627

    Article  CAS  Google Scholar 

  37. Li P, Yin L, Song G, Sun J, Wang L, Wang H (2008) High-performance EPDM/organoclay nanocomposites by melt extrusion. Appl Clay Sci 40:38–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Iran National Science Foundation (INSF) (Grant No. 85026/05) for supporting funds required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Naderi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajibaba, A., Naderi, G., Ghoreishy, M. et al. Effect of single-walled carbon nanotubes on morphology and mechanical properties of NBR/PVC blends. Iran Polym J 21, 505–511 (2012). https://doi.org/10.1007/s13726-012-0055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0055-9

Keywords

Navigation