Skip to main content
Log in

Study on performances of ZSM-5 doped P(VDF-HFP) based composite polymer electrolyte prepared by steam bath technique

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Several novel kinds of poly (vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) based composite polymer electrolyte (CPE) membranes doped with ZSM-5 (Zeolite sieve of molecular porosity) were fabricated by steam bath technique. The desirable CPE membranes were further prepared by immersing them into the liquid electrolyte solution of 1.0 M LiPF6-ethylene carbonate /dimethyl carbonate/ethylmethyl carbonate (v/v/v:1/1/1) for 1 h to be activated at room temperature. Physical and chemical properties of the as-prepared CPEs are studied by scanning electron microscope, Fourier transform infrared, thermogravimetry and differential scanning calorimetry and electrochemical methods. The results showed that the thermal and electrochemical stabilities of the CPEs can be reached to 350 °C and 5 V, respectively. Reciprocal temperature dependence of corresponding ionic conductivity follows Vogel–Tamman–Fulcher relation, and ionic conductivity at ambient temperature can be up to 5.1 mS cm−1. The fabricated Li/CPEs/LiCoO2 coin cells with the CPE membranes prepared by steam bath technique can achieve a high discharge capacity about 144.97 mAh g−1 at 0.1 C. At 1.0 C, the capacity can be kept to 89.84 % of that at 0.1 C for the cell. After 26 cycles, the cell prepared with these CPE membranes can keep 97.5 % of its initial discharge capacity. These excellent physicochemical and battery properties indicate that these novel CPEs can be potentially used as electrolyte in lithium ion polymer battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162:685–689

    Article  CAS  Google Scholar 

  2. Manuel Stephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  CAS  Google Scholar 

  3. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  4. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  5. Kelly IE, Owen JR, Steele BCH (2009) Poly(ethylene oxide) electrolytes for operation at near room temperature. J Power Sources 14:13–21

    Article  Google Scholar 

  6. Moulin JF, Damman P, Dosière M (1999) Poly(ethylene oxide)/lithium triflate phase diagram. Polymer 40:5843–5850

    Article  CAS  Google Scholar 

  7. Abraham KM, Pasquariello DM (1990) Rechargeable sodium batteries. J Electrochem Soc 137:1189–1190

    Article  CAS  Google Scholar 

  8. Zhang H, Chen LQ, Huang XJ, Xu RJ (1992) Studies on PAN-based lithium salt complex. Electrochim Acta 37:1671–1673

    Article  Google Scholar 

  9. Wang Z, Huang B, Huang H, Chen L, Xue R, Wang F (1996) Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy. Electrochim Acta 41:1443–1446

    Article  CAS  Google Scholar 

  10. Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997

    Article  CAS  Google Scholar 

  11. Ren Z, Liu Y, Sun K, Zhou X, Zhang N (2009) A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim Acta 54:1888–1892

    Article  CAS  Google Scholar 

  12. Pu W, He X, Wang L, Jiang C, Wan C (2006) Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion. J Membr Sci 272:11–14

    Article  CAS  Google Scholar 

  13. Shi L, Wang R, Cao Y, Liang DT, Tay JH (2008) Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. J Membr Sci 315:195–204

    Article  CAS  Google Scholar 

  14. Jia P, Yee WA, Xu J, Toh CL, Ma J, Lu X (2011) Thermal stability of ionic liquid-loaded electrospun poly(vinylidene fluoride) membranes and its influences on performance of electrochromic devices. J Membr Sci 376:283–289

    Article  CAS  Google Scholar 

  15. Tripathi BP, Shahi VK (2011) Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979

    Article  CAS  Google Scholar 

  16. Kim KM, Park NG, Ryu KS, Chang SH (2002) Characterization of poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles. Polymer 43:3951–3957

    Article  CAS  Google Scholar 

  17. Kim KM, Park NG, Ryu KS, Chang SH (2006) Characteristics of PVdf-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim Acta 51:5636–5644

    Article  CAS  Google Scholar 

  18. Missan HPS, Lalia BS, Karan K, Maxwell A (2010) Polymer-ionic liquid nano-composites electrolytes: electrical, thermal and morphological properties. Mater Sci Eng B 175:143–149

    Article  CAS  Google Scholar 

  19. Heitner KL (2000) The search for the better polymer electrolyte. J Power Sources 89:128–131

    Article  CAS  Google Scholar 

  20. Boudin F, Andrieu X, Jehoulet C, Olsen II (1999) Microporous PVdF gel for lithium-ion batteries. J Power Sources 81–82:804–807

    Article  Google Scholar 

  21. Chen Z, Zhang LZ, West R, Amine K (2008) Gel electrolyte for lithium-ion batteries. Electrochim Acta 53:3262–3266

    Article  CAS  Google Scholar 

  22. Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK (2008) Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. J Membr Sci 325:957–963

    Article  CAS  Google Scholar 

  23. Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86–88:49–54

    Article  Google Scholar 

  24. Wang Y, Travas-Sejdic J, Steiner R (2002) Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery. Solid State Ionics 148:443–449

    Article  CAS  Google Scholar 

  25. Caillon CM, Claude MB, Lemordant D, Bosser G (2002) Absorption ability and kinetics of a liquid electrolyte in PVDF-HFP copolymer containing or not SiO2. J Power Sources 107:125–132

    Article  Google Scholar 

  26. Au LTY, Yeung KL (2001) An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes. J Membr Sci 194:33–55

    Article  CAS  Google Scholar 

  27. Xi J, Qiu X, Cui M, Tang X, Zhu W, Chen L (2006) Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves. J Power Sources 156:581–588

    Article  CAS  Google Scholar 

  28. Xi J, Tang X (2006) Investigations on the enhancement mechanism of inorganic filler on ionic conductivity of PEO-based composite polymer electrolyte: the case of molecular sieves. Electrochim Acta 51:4765–4770

    Article  CAS  Google Scholar 

  29. Bandyopadhyay S, Marzke RF, Singh RK, Newman N (2010) Electrical conductivities and Li ion concentration-dependent diffusivities, in polyurethane polymers doped with lithium trifluoromethanesulfonimide (LiTFSI) or lithium perchlorate (LiClO4). Solid State Ionics 181:1727–1731

    Article  CAS  Google Scholar 

  30. Tominaga Y, Shimomura T, Nakamura M (2010) Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes. Polymer 51:4295–4298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out with the financial support of the Major Provincial Science and Technology Programs of Hunan (2009FJ1002) and Central College on the 2010 Operational Costs of Basic Research Project (2010QZZD0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, W., Li, X., Wang, Z. et al. Study on performances of ZSM-5 doped P(VDF-HFP) based composite polymer electrolyte prepared by steam bath technique. Iran Polym J 21, 481–488 (2012). https://doi.org/10.1007/s13726-012-0052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0052-z

Keywords

Navigation