Skip to main content
Log in

Morphology and melt rheology of biodegradable poly(lactic acid)/poly(butylene succinate adipate) blends: effect of blend compositions

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Effect of the blend ratios on the morphology and melt rheology of poly(lactic acid) (PLA)/poly(butylene succinate adipate) (PBSA) blends were investigated using scanning electron microscope, strain-controlled rheometer, and capillary rheometer techniques. The morphological analysis shows that the average radius of the dispersed droplets of PBSA particles increases with change in the blend composition, and a co-continuous structure was generated when PBSA content reached 40%. For the linear viscoelasticity, the increase in the storage modulus at low-frequency region was more distinct in PLA/PBSA blends than in their pure components. A second plateau is clearly observed when the PBSA content was 20% or higher. Weight relaxation spectra showed that there was a longer relaxation time for blend system. These relaxation times were considered to be the shape relaxation periods of the droplets, which increase with change in the blend composition. The interfacial tensions of the PLA/PBSA blends at different compositions were between 5.3 and 6.1 mN/m, calculated from the weighted relaxation spectra and slightly higher than those obtained from Palierne model. These values are relatively high, indicating the poor miscibility of the two polymers. Both pure PLA and PBSA follow the Cox–Merz rule, in good manner. Though, the rule does not satisfy with the PLA/PBSA blends. In addition, PLA/PBSA blends show more non-Newtonian tendencies than their pure components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Polym Phys 49:1051–1083

    Article  CAS  Google Scholar 

  2. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  3. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  4. Semba T, Kitagawa K, Ishiaku US, Kotaki M, Hamada H (2007) Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. J Appl Polym Sci 103:1066–1074

    Article  CAS  Google Scholar 

  5. Tsuji H, Horikawa G, Itsuno S (2007) Melt-processed biodegradable polyester blends of poly(l-lactic acid) and poly(ε-caprolactone): effects of processing conditions on biodegradation. J Appl Polym Sci 104:831–841

    Article  CAS  Google Scholar 

  6. Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Reactive compatibilization of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends with reactive processing agents. Polym Eng Sci 48:1359–1368

    Article  CAS  Google Scholar 

  7. Sabet SS, Katbab AA (2009) Interfacially compatibilized poly(lactic acid) and poly(lactic acid)/polycaprolactone/organoclay nanocomposites with improved biodegradability and barrier properties: effects of the compatibilizer structural parameters and feeding route. J Appl Polym Sci 111:1954–1963

    Article  CAS  Google Scholar 

  8. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly(butylenes adipate-co-terephthalate) blends. Biomacromolecules 7:199–207

    Article  Google Scholar 

  9. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL (2010) Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 116:680–687

    CAS  Google Scholar 

  10. Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci 7:921–928

    Article  CAS  Google Scholar 

  11. Feng F, Ye L (2011) Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 119:2778–2783

    Article  CAS  Google Scholar 

  12. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 47:3557–3564

    Article  CAS  Google Scholar 

  13. Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820

    Article  CAS  Google Scholar 

  14. Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33

    Article  CAS  Google Scholar 

  15. Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  16. Choi SJ, Schowalter WR (1975) Rheological properties of nondilute suspensions of deformable particles. Phys Fluids 18:420–427

    Article  Google Scholar 

  17. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685

    Article  CAS  Google Scholar 

  18. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN (2010) Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromol Res 18:583–588

    Article  CAS  Google Scholar 

  19. Ray SS, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stab 92:802–812

    Article  CAS  Google Scholar 

  20. Lee S, Lee JW (2005) Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate). Korea Aust Rheol J 17:71–77

    Google Scholar 

  21. Chen GX, Yoon JS (2005) Morphology and thermal properties of poly(l-lactide)/poly(butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J Polym Sci Polym Phys 43:478–487

    Article  CAS  Google Scholar 

  22. Wang R, Wang S, Zhang Y (2009) Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J Appl Polym Sci 113:3095–3102

    Article  CAS  Google Scholar 

  23. Wang Y, Mano JF (2007) Biodegradable poly(l-lactic acid)/poly(butylene succinate-co-adipate) blends: miscibility, morphology, and thermal behavior. J Appl Polym Sci 105:3204–3210

    Article  CAS  Google Scholar 

  24. Bhadane PA, Champagne MF, Huneault MA, Tofan F, Favis BD (2006) Erosion-dependant continuity development in high viscosity ratio blends of very low interfacial tension. J Polym Sci Polym Phys 44:1919–1929

    Article  CAS  Google Scholar 

  25. Xu X, Yan X, Zhu T, Zhang C, Sheng J (2007) Phase morphology development of polypropylene/ethylene-octene copolymer blends: effects of blend composition and processing conditions. Polym Bull 58:465–478

    Article  CAS  Google Scholar 

  26. Diao J, Zhang J, Zhao Q, Yang H (2006) Mechanical properties and morphology of blends of hyperbranched polymer with polypropylene and poly(vinyl chloride). Iran Polym J 15:91–98

    CAS  Google Scholar 

  27. Chen P, Chen J, He J (2009) Suppressed coalescence of dispersed viscous poly(methyl methacrylate) phase in polystyrene matrix by glass beads. J Polym Sci Polym Phys 47:25–35

    Article  CAS  Google Scholar 

  28. Sundararajs U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657

    Article  Google Scholar 

  29. Ho RM, Wu CH, Su AC (1990) Morphology of plastic/rubber blends. Polym Eng Sci 30:511–518

    Article  CAS  Google Scholar 

  30. Kitayama N, Keskkula H, Paul DR (2000) Reactive compatibilization of nylon 6/styrene–acrylonitrile copolymer blends. Part 1. Phase inversion behavior. Polymer 41:8041–8052

    Article  CAS  Google Scholar 

  31. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

  32. Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36:1127–1141

    Article  CAS  Google Scholar 

  33. Bousmina M (1999) Effect of interfacial tension on linear viscoelastic behavior of immiscible polymer blends. Rheol Acta 38:251–254

    Article  CAS  Google Scholar 

  34. Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26:320–329

    Google Scholar 

  35. Lacroix C, Aressy M, Carreau PJ (1997) Linear viscoelastic behavior of molten polymer blends: a comparative study of the Palierne and Lee and Park models. Rheol Acta 36:416–428

    CAS  Google Scholar 

  36. Wang W, Shangguan Y, Zhao L, Yu J, He L, Tan H, Zheng Q (2008) The linear viscoelastic behaviors of nylon 1212 blends toughened with elastomer. J Appl Polym Sci 108:1744–1754

    Article  CAS  Google Scholar 

  37. Castro M, Prochazka F, Carrot C (2005) Cocontinuity in immiscible polymer blends: a gel approach. J Rheol 49:149–160

    Article  CAS  Google Scholar 

  38. Bousmina M (1999) Rheology of polymer blends: linear model for viscoelastic emulsions. Rheol Acta 38:73–83

    Article  CAS  Google Scholar 

  39. Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32:65–73

    Article  CAS  Google Scholar 

  40. Sung YT, Han MS, Hyun JC, Kim WN, Lee HS (2003) Rheological properties and interfacial tension of polypropylene–poly(styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44:1681–1687

    Article  CAS  Google Scholar 

  41. Taheri M, Morshedian J, Khonakdar HA (2011) Effect of compatibilizer on interfacial tension of SAN/EPDM blend as measured via relaxation spectrums calculated from Palierne and Choi–Schowalter models. Polym Bull 66:363–376

    Article  CAS  Google Scholar 

  42. Yee M, Calvão PS, Demarquette NR (2007) Rheological behavior of poly(methyl methacrylate)/polystyrene (PMMA/PS) blends with the addition of PMMA-ran-PS. Rheol Acta 46:653–664

    Article  CAS  Google Scholar 

  43. Aravind I, Ahn KH, Ranganathaiah C, Thomas S (2009) Rheology, morphology, mechanical properties and free volume of poly(trimethylene terephthalate)/polycarbonate blends. Ind Eng Chem Res 48:9942–9951

    Article  CAS  Google Scholar 

  44. Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) Viscoelastic interfacial properties of compatibilized poly(ε-caprolactone)/polylactide blend. J Polym Sci Polym Phys 48:756–765

    Article  CAS  Google Scholar 

  45. Palade LI, Lehermeier HJ, Dorgan JR (2001) Melt rheology of high l-content poly(lactic acid). Macromolecules 34:1384–1390

    Article  CAS  Google Scholar 

  46. Ray SS, Bousmina M (2005) Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity. Polymer 46:12430–12439

    Article  CAS  Google Scholar 

  47. Li S, Järvelä PK, Järvelä PA (1997) A comparison between apparent viscosity and dynamic complex viscosity for polypropylene/maleated polypropylene blends. Polym Eng Sci 37:18–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Showa High Polymer Co. Ltd., Japan, for kindly providing PBSA used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-jun Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, Zy., Wang, Hr., Gao, Y. et al. Morphology and melt rheology of biodegradable poly(lactic acid)/poly(butylene succinate adipate) blends: effect of blend compositions. Iran Polym J 21, 81–89 (2012). https://doi.org/10.1007/s13726-011-0009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-011-0009-7

Keywords

Navigation