Skip to main content
Log in

Predicting drug-resistant miRNAs in cancer

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in controlling drug sensitivity/resistance in cancer. Hence, the effectiveness of cancer treatment can be significantly improved by identifying these miRNAs. We reviewed the studies that emphasize the identification of miRNAs associated with drug resistance in cancer. Two computational methods are also developed to identify the miRNAs associated with drug resistance. In the first method, the Euclidean distance with weighted fold change (EDWFC) score is developed. Here, the Euclidean distance and fold change, computed using the averages of control and resistant expressions, are multiplied by varying the power of fold change to minimize the average rank of miRNAs. The miRNAs are then sorted in descending order according to the EDWFC value which provides superior results as compared to existing feature/gene selection methods in terms of multiple performance measures. In the second method, namely the histogram-based clustering and Euclidean distance with fold change-based ranking (HCEDFCR), the miRNAs are first divided into different clusters using a novel histogram-based clustering method. Then, the product of the Euclidean distance and the fold change value, using the control and resistant miRNA expressions, are used to rank the clusters and the miRNAs inside the clusters. Finally, a portion of the miRNAs is selected from the top of the rank list in every cluster. For most of the datasets, the top 20 miRNAs selected using the first method and the first three miRNAs of the top three clusters obtained using the second method contain the miRNAs associated with cancer drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadi Moughari F, Eslahchi C (2021) A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information. PloS one 16(4):1–31

    Article  Google Scholar 

  • Bockhorn J et al (2013) Microrna-30c inhibits human breast tumour chemotherapy resistance by regulating twf1 and il-11. Nat Commun 4(1):1–14

    Article  Google Scholar 

  • Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2016) Feature selection for high-dimensional data. Prog Artif Intell 5(2):65–75

    Article  Google Scholar 

  • Chen S, Chen X, Xiu Y-L, Sun K-X, Zong Z-H, Zhao Y (2014) microrna 490–3p enhances the drug-resistance of human ovarian cancer cells. J Ovarian Res 7(1):1–6

    Article  Google Scholar 

  • Enfield KS, Stewart GL, Pikor LA, Alvarez CE, Lam S, Lam WL, Chari R (2011) Microrna gene dosage alterations and drug response in lung cancer. J Biomed Biotechnol 2011(1):1–15

    Article  Google Scholar 

  • Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, Ito M (2015) mir-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate 75(14):1568–1578

    Article  Google Scholar 

  • Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N, Mokhtarzadeh A, Baradaran B (2019) Micrornas in cancer drug resistance: Basic evidence and clinical applications. J Cell Physiol 234(3):2152–2168

    Article  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422

    Article  MATH  Google Scholar 

  • Han, J, Pei, J, Tong, H (2022) Data mining: concepts and techniques, 4th Edition. Morgan kaufmann, USA

  • Hu Q et al (2014) Down-regulation of mirna-452 is associated with adriamycin-resistance in breast cancer cells. Asian Pac J Cancer Prev 15(13):5137–5142

    Article  Google Scholar 

  • Huang Y-A, Hu P, Chan KC, You Z-H (2020) Graph convolution for predicting associations between mirna and drug resistance. Bioinformatics 36(3):851–858

    Article  Google Scholar 

  • Hummel R, Sie C, Watson DI, Wang T, Ansar A, Michael MZ, Van der Hoek M, Haier J, Hussey DJ (2014) Microrna signatures in chemotherapy resistant esophageal cancer cell lines. World J Gastroenterol WJG 20(40):904–912

    Article  Google Scholar 

  • Jansson MD, Lund AH (2012) Microrna and cancer. Mol Oncol 6(6):590–610

    Article  Google Scholar 

  • Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O, Choi IJ, Munroe DJ, Green JE (2011) mirna signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genom 4(1):1–14

    Article  Google Scholar 

  • Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H, Noro R, Minegishi Y, Kubota K, Gemma A (2014) Mir-134/487b/655 cluster regulates tgf-b-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting magi2 in lung adenocarcinoma cells. Mol Cancer Ther 13(2):444–453

    Article  Google Scholar 

  • Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Vasyl CF, Pogribny IP (2008) Involvement of microrna-451 in resistance of the mcf-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7(7):2152–2159

    Article  Google Scholar 

  • Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK, Kakar SS (2011) Microrna signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J Ovarian Res 4(1):1–11

    Article  Google Scholar 

  • Kurokawa K et al (2012) Role of mir-19b and its target mrnas in 5-fluorouracil resistance in colon cancer cells. J Gastroenterol 47(8):883–895

    Article  Google Scholar 

  • Li Y, Wang Z, Ajani JA, Song S (2021) Drug resistance and cancer stem cells. Cell Commun Signal 19(1):1–11

    Article  Google Scholar 

  • Lundqvist EÅ, Fujiwara K, Seoud M (2015) Principles of chemotherapy. Int J Gynecol Obstet 131:S146–S149

    Article  Google Scholar 

  • Luxburg, U V (2007) “A tutorial on spectral clustering,” pp. 1–29

  • Ma J, Dong C, Ji C (2010) Microrna and drug resistance. Cancer Gene Ther 17(8):523–531

    Article  Google Scholar 

  • Mahmud MS, Huang JZ, Fu X (2020) Variational autoencoder-based dimensionality reduction for high-dimensional small-sample data classification. Int J Comput Intell Appl 19(01):1–19

    Article  Google Scholar 

  • Maji P, Pal SK (2009) “Fuzzy-rough sets for information measures and selection of relevant genes from microarray data,’’ IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics) 40(3):741–752

    Article  Google Scholar 

  • Mencia N, Selga E, Noé V, Ciudad CJ (2011) Underexpression of mir-224 in methotrexate resistant human colon cancer cells. Biochem Pharmacol 82(11):1572–1582

    Article  Google Scholar 

  • Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, Jacob S, Majumder S (2008) Microrna-221/222 confers tamoxifen resistance in breast cancer by targeting p27kip1*. J Biol chemis 283(44):29

    Google Scholar 

  • Mostavi M, Chiu Y-C, Huang Y, Chen Y (2020) Convolutional neural network models for cancer type prediction based on gene expression. BMC Med Genom 13(5):1–13

    Google Scholar 

  • Mundra PA, Rajapakse JC (2010) Svm-rfe with mrmr filter for gene selection. IEEE Trans Nanobiosci 9(1):31–37

    Article  Google Scholar 

  • Ottman R, Nguyen C, Lorch R, Chakrabarti R (2014) Microrna expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance. Mol Cancer 13(1):1–21

    Article  Google Scholar 

  • Pal JK, Ray SS, Pal SK (2019) Identifying drug resistant mirnas using entropy based ranking. IEEE/ACM Trans Comput Biol Bioinf 18(3):973–984

    Article  Google Scholar 

  • Palagani A et al (2014) Ectopic microrna-150-5p transcription sensitizes glucocorticoid therapy response in mm1s multiple myeloma cells but fails to overcome hormone therapy resistance in mm1r cells. PLoS ONE 9(12):1–30

    Article  Google Scholar 

  • Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  • Pichiorri F et al (2013) In vivo ncl targeting affects breast cancer aggressiveness through mirna regulation. J Exp Med 210(5):951–968

    Article  Google Scholar 

  • Raza U, Zhang JD, Şahin Ö (2014) Micrornas: master regulators of drug resistance, stemness, and metastasis. J Mol Med 92(4):321–336

    Article  Google Scholar 

  • Schotte D, De Menezes RX, Moqadam FA, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R, Den Boer ML (2011) Microrna characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 96(5):703–711

    Article  Google Scholar 

  • Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybern 3(4):269–276

    Article  Google Scholar 

  • Si W, Shen J, Zheng H, Fan W (2019) The role and mechanisms of action of micrornas in cancer drug resistance. Clin Epigenetics 11(1):1–24

    Article  Google Scholar 

  • Wolfson B, Eades G, Zhou Q (2014) Roles of microrna-140 in stem cell-associated early stage breast cancer. World J Stem Cells 6(5):591–597

    Article  Google Scholar 

  • Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond SM, Kim S, Nephew KP (2009) Computational analysis of microrna profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics 25(4):430–434

    Article  Google Scholar 

  • Yang H, Xu Y, Shang D, Shi H, Zhang C, Dong Q, Zhang Y, Bai Z, Cheng S, Li X (2020) ncdrmarker: a computational method for identifying non-coding rna signatures of drug resistance based on heterogeneous network. Annals Transl Med 8(21):1–31

    Article  Google Scholar 

  • Yin W, Wang P, Wang X, Song W, Cui X, Yu H, Zhu W (2013) Identification of micrornas and mrnas associated with multidrug resistance of human laryngeal cancer hep-2 cells. Braz J Med Biol Res 46:546–554

    Article  Google Scholar 

  • Zhang L et al (2013) mir-153 supports colorectal cancer progression via pleiotropic effects that enhance invasion and chemotherapeutic resistance. Can Res 73(21):6435–6447

    Article  Google Scholar 

  • Zhang W, Dolan ME (2010) Emerging role of micrornas in drug response. Curr Opin Mol Ther 12(6):695–702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Singh, J., Pal, J.K. et al. Predicting drug-resistant miRNAs in cancer. Netw Model Anal Health Inform Bioinforma 12, 6 (2023). https://doi.org/10.1007/s13721-022-00398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-022-00398-8

Keywords

Navigation