Skip to main content

Advertisement

Log in

Multiple networks modules identification by a multi-dimensional Markov chain method

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

As a general approach to study interactions among small biological molecules such as genes and proteins, network analysis has aroused great interest of people from various research disciplines. However, the construction of network is usually quite sensitive to noise which is unavoidable in real data. Besides, the parameter selections for network construction can also affect the result significantly. These two factors largely decrease the consistency of results generated in network analysis. In particular, we consider detecting closely connected subgraphs named module structure. As an important common property of biological networks, this module structure is often destroyed corrupted by both noise and poor parameter selections in network construction. To conquer these two disadvantages to improve the consistency of module structure identified, we propose to process multiple networks for same set of biological molecules simultaneously for common module structure. More specifically, we combine multiple networks together by building an order 3 tensor data with each layer as one of the multiple networks. Then given any molecule(s) as prior information, a novel tensor-based Markov chain algorithm is proposed to iteratively detect the module that includes the prior node. Moreover, the proposed algorithm is capable of evaluating the contribution scores of each network to the detected module structure. The contribution scores from multiple networks can be not only useful criteria to measure the consistency of module structure, but also valid indicator of corruption in networks. To demonstrate the effectiveness and efficiency of the proposed tensor-based Markov chain algorithm, experimental results on synthetic data set as well as two real gene co-expression data sets of human beings are reported. We also validate that the identified common modules are biologically meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform 7:207

    Article  Google Scholar 

  • Bernatsky S, Ramsey-Goldman R, Clarke A (2005) Exploring the links between systemic lupus erythematosus and cancer. Rheum Dis Clin N Am 31(2):387–402

    Article  Google Scholar 

  • Brun C, Chevenet F, Martin D, Wojcik J, Guenoche A, Jacq B (2003) Functional classification of proteins for the prediction of cellular function from a protein–protein interaction network. Genome Biol 5:R6

    Article  Google Scholar 

  • Chen J, Yuan B (2006) Detecting functional modules in the yeast protein protein interaction network. Bioinformatics 22:2283–2290

  • Chikina M, Huttenhower C, Murphy C, Troyanskaya O (2009) Global prediction of tissue-specific gene expression and context-dependent gene networks in caenorhabditis elegans. PLoS Comput Biol 5:e1000417

    Article  Google Scholar 

  • Chua H, Sung W, Wong L (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics 22:1623–1630

    Article  Google Scholar 

  • Danon L et al (2005) Comparing community structure identification. J Stat Mech Theory Exp 2005:P09008

    Article  Google Scholar 

  • Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol 1

  • Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

  • Estrada E, Hatano N (2008) Communicability in complex networks. Phys Rev E 77:036111

    Article  MathSciNet  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174

    Article  MathSciNet  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Hu H, Yan X, Huang Y, Han J, Zhou XJ (2005) Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21:i213–i221

  • Huang Y, Li H, Hu H, Yan X, Waterman MS et al (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23:i222–i229

  • Huang D, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat Protoc 4(1):44–57

    Article  Google Scholar 

  • Huang D, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nuclear Acids Res 37(1):1–13

    Article  Google Scholar 

  • Koyuturk M, Grama A, Szpankowski W (2004) An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics 20:i200–i207

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  Google Scholar 

  • Li W, Liu CC, Zhang T, Li H, Waterman MS et al (2012) Integrative analysis of many weighted co-expression networks using tensor computation, p e1001106

  • Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878

  • Newman MEJ (2006a) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582

    Article  Google Scholar 

  • Newman MEJ (2006b) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104

    Article  MathSciNet  Google Scholar 

  • Parikh-Patel A, White RH, Allen M, Cress R (2008) Cancer risk in a cohort of patients with systemic lupus erythematosus (SLE) in California. Cancer Causes Control 19(8):887–894

    Article  Google Scholar 

  • Porter MA et al (2010) Communities in networks. Not AMS 56:1082–1102

    Google Scholar 

  • Radicchi F et al (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101:2658–2663

    Article  Google Scholar 

  • Ross S (2003) Introduction to probability models. Academic Press, New York

  • Segal E, Friedman N, Koller D, Regev A (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098

  • Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88

    Article  Google Scholar 

  • Shen C, Ng M, Jing L (2013) Sparse-MIML: a sparsity-based multi-instance multi-learning algorithm. Energy minimization methods in computer vision and pattern recognition. Lect Notes Comput Sci 8081:204–306

    Google Scholar 

  • Shen C, Zhang S, Ng M (2014) A tensor-based Markov chain method for module identification from multiple networks. In: IEEE proceeding of 2014 8th international conference on systems biology, pp 49–58

  • Tang W, Lu Z, Dhillon IS (2009) Clustering with multiple graphs. In: IEEE international conference on data mining (ICDM), pp 1016–1021

  • Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein function prediction from protein–protein interaction networks. Nat Biotechnol 21:697–700

    Article  Google Scholar 

  • Wang X, Chen G (2003) Complex networks: small-world, scale-free and beyond. In: IEEE circuits and systems magazine, pp 6–20

  • Wu Q, Ng MK, Ye Y (2013) Markov-MIML: a markov chain-based multi-instance multi-label learning algorithm. Knowl Inf Syst 37:83–104

    Article  Google Scholar 

  • Yu S, Liu X, Tranchevent L-C, Glanzel W, Suykens JAK, Moor BD, Moreau Y (2010) Optimized data fusion for \(K\)-means Laplacian clustering. Bioinformatics 27(1):118–126

  • Zhang S, Zhao H (2012) Community identification in networks with unbalanced structure. Phys Rev E 85:066114

    Article  Google Scholar 

  • Zhang S, Zhao H (2013) Normalized modularity optimization method for community identification with degree adjustment. Phys Rev E 88:052802

    Article  Google Scholar 

Download references

Acknowledgments

S. Zhang’s research is supported in part by NSFC Grants 10901042, 91130032,11471082 and Shanghai Natural Science Foundation 13ZR1403600. M. Ng’s research is supported in part by Hong Kong Research Grant Council GRF Grant No. 12302715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Ng.

Appendix

Appendix

Let us first consider the following lemma:

Lemma 1

$$\begin{aligned} \sum ^{n_1}_{i=1}[\mathbf {M_1}]_{i,k} = 1 \nonumber , \quad \ \sum ^{n_2}_{i=1}[\mathbf {M_2}]_{i,k} = 1 \nonumber \end{aligned}$$

Proof

$$\begin{aligned} \sum ^{n_1}_{i=1}[\mathbf {M_1}]_{i,k}=\sum ^{n_1}_{i=1}[\mathcal {A}^{(1)}\times _2 \mathbf {x}]_{i,k}=\sum ^{n_{1}}_{j=1}a_{i,j,k}x_{j} \end{aligned}$$
$$\begin{aligned} \sum ^{n_{1}}_{i=1}[\mathbf {M_1}]_{i,k}= & {} \sum ^{n_{1}}_{i=1}\sum ^{n_{1}}_{j=1}a_{i,j,k}x_{j} = \sum ^{n_{1}}_{j=1} \left( \sum ^{n_{1}}_{i=1}a_{i,j,k}x_{j} \right) =\sum ^{n_{1}}_{j=1}x_{j}=1 \end{aligned}$$

we also easy get \(\sum ^{n_2}_{i=1}[\mathbf {M_2}]_{i, k}=1\) via the similar way. \(\square\)

This Lemma 1 guarantees that both \(\mathbf {M}_1\) and \(\mathbf {M}_2\) are transition probability matrices. Then we may show that both \(\mathbf {x}\) and \(\mathbf {y}\) satisfying (3) and (4) are unique:

Lemma 2

For \(\alpha \in (0,1)\) , there exist unique \(\mathbf {x}\) and \(\mathbf {y}\) satisfying (3) and (4).

Proof

From Lemma 1, we get that

$$\begin{aligned} \Vert \mathbf {M}_{1}\Vert _1=\Vert \mathbf {M}_{2}\Vert _1 \end{aligned}$$

therefore

$$\begin{aligned} \Vert \mathbf {M_1}\mathbf {M_2}\Vert _1\le \Vert \mathbf {M_1}\Vert _1\Vert \mathbf {M_2}\Vert _1 \end{aligned}$$

denote the radius of \(\mathbf {M_1}\mathbf {M_2}\) as \(\rho (\mathbf {M_1}\mathbf {M_2})\) and it is not larger than its norm, we get \(\rho (\mathbf {M_1}\mathbf {M_2})\le 1\).

From (3) and (4),

$$\begin{aligned} \mathbf {x}= \; & {} (1-\alpha )\mathbf {M_1}\mathbf {M_{2}}\mathbf {x}+\alpha \mathbf {p}\\ \mathbf {y}= \; & {} (1-\alpha )\mathbf {M_2}\mathbf {M_{1}}\mathbf {y}+\alpha \mathbf {p} \end{aligned}$$

then

$$\begin{aligned} (\mathbf {I}-(1-\alpha )\mathbf {M_1}\mathbf {M_2})\mathbf {x}= \; & {} \alpha \mathbf {p} \\ (\mathbf {I}-(1-\alpha )\mathbf {M_2}\mathbf {M_1})\mathbf {y}= \; & {} \alpha \mathbf {p} \end{aligned}$$

where \(\mathbf {I}\) is identity matrix because \(\rho ((1-\alpha )\mathbf {M_1}\mathbf {M_2})=(1-\alpha )\rho (\mathbf {M_1}\mathbf {M_2})\le (1-\alpha )<1\) and \(\rho ((1-\alpha )\mathbf {M_2}\mathbf {M_1})\le 1-\alpha <1\). Therefore, \(\mathbf {I}-(1-\alpha )\mathbf {M_1}\mathbf {M_2}\) and \(\mathbf {I}-(1-\alpha )\mathbf {M_2}\mathbf {M_1}\) are nonsingular,

$$\begin{aligned} \mathbf {x}= \; & {} \alpha [\mathbf {I}-(1-\alpha )\mathbf {M_1}\mathbf {M_2}]^{-1}\mathbf {p} \\ \mathbf {y}= \; & {} \alpha [\mathbf {I}-(1-\alpha )\mathbf {M_2}\mathbf {M_1}]^{-1}\mathbf {p} \end{aligned}$$

\(\square\)

Now consider the iteration in (5) and (6), we may give the following Lemma:

Lemma 3

The iteration guarantees the sequences \(\{\mathbf {x_k}\}\) and \(\{\mathbf {y_k}\}\) satisfying \(\Vert \mathbf {x}_k\Vert _1=1\) and \(\Vert \mathbf {y}_k\Vert _1=1\).

Proof

The iteration can be written as the following

$$\begin{aligned} \mathbf {x_{k+1}}= & {} (1-\alpha )\mathbf {M_1}\mathbf {M_2}\mathbf {x_k}+\alpha \mathbf {p} \\ \mathbf {y_{k+1}}= & {} (1-\alpha )\mathbf {M_2}\mathbf {M_1}\mathbf {y_k}+\alpha \mathbf {p} \end{aligned}$$

let \(e=[1,1,\ldots ,1]^{\rm T}\), then

$$\begin{aligned} e^{\rm T}\mathbf {x_{k+1}}= & {} (1-\alpha )e^{\rm T}\mathbf {M_1}\mathbf {M_2}\mathbf {x_k}+e^{\rm T}\alpha \mathbf {p} \\= & {} (1-\alpha )e^{\rm T}\mathbf {M_2}\mathbf {x_k}+\alpha =(1-\alpha )e^{\rm T}\mathbf {x_{k}}+\alpha \end{aligned}$$

If \(\Vert \mathbf {x_k}\Vert _1=1\), then \(\Vert \mathbf {x_{k+1}}\Vert _1=1\). The same consequence can be obtained for sequence \(\{\mathbf {y_k}\}\). \(\square\)

Based on previous two lemmas, we may give the following remarks.

Remark 1

  1. 1.

    If we set \(\Vert \mathbf {x_0}\Vert _1=\Vert \mathbf {y_0}\Vert _1=1\), then the \(\Vert \cdot \Vert _1=1\) can keep during the iteration.

  2. 2.

    \(\Vert \mathbf {M_1}\Vert _1=\Vert \mathbf {M_2}\Vert _1=1\) is established under the condition \(\Vert \mathbf {x}\Vert _1=1\) which the iteration promised.

Then we are ready to present the following Theorem:

Theorem 1

The iterations (5) and (6) are convergent when \(\alpha \in (2/3,1)\).

Theorem 1 can be proved easily via the similar proof of Lemma 2. This theorem demonstrates the convergence of the iterative scheme in the second stage of Algorithm 1. Then according to Algorithm 1, it is easy to get:

$$\begin{aligned} \mathbf {x}(t)= & {} (1-\alpha )\mathbf {M_1}(t-1)\mathbf {M_2}(t-1)\mathbf {x}(t)+\alpha \mathbf {p} \\ \mathbf {y}(t)= & {} (1-\alpha )\mathbf {M_2}(t-1)\mathbf {M_1}(t-1)\mathbf {y}(t)+\alpha \mathbf {p} \end{aligned}$$

then

$$\begin{aligned} \mathbf {x}(t)= & {} [\mathbf {I}-(1-\alpha )\mathbf {M_1}(t-1)\mathbf {M_2}(t-1)]^{-1}\alpha \mathbf {p} \\ \mathbf {y}(t)= & {} [\mathbf {I}-(1-\alpha )\mathbf {M_2}(t-1)\mathbf {M_1}(t-1)]^{-1}\alpha \mathbf {p} \end{aligned}$$

It is not difficult to see that the convergence of \(\{\mathbf {y}(t)\}\) is guaranteed if \(\{\mathbf {x}(t)\}\) converges. Therefore, it is enough that we only consider the convergence of \(\{\mathbf {x}(t)\}\) here. For simplicity, let

$$\begin{aligned} \mathbf {x}(t+1)=F(\mathbf {x}(t)) \end{aligned}$$
(7)

where \(F(\mathbf {x}(t))=(\mathbf {I}-(1-\alpha )\mathbf {M_1}(t)\mathbf {M_2}(t))^{-1}\alpha \mathbf {p}\).

Let us consider the mapping

$$\begin{aligned} F: \mathbf {x}\rightarrow \mathbf {F}(\mathbf {x}) \end{aligned}$$

where \(\mathbf {F}(\mathbf {x})=(\mathbf {I}-(1-\alpha )\mathbf {M_1}(\mathbf {x})\mathbf {M_2}(\mathbf {x}))^{-1}\alpha \mathbf {p}\). \(\mathbf {M}_1(\mathbf {x})= \mathcal {A}^{(1)}\times _{2}\mathbf {x}\) and \(\mathbf {M}_2(\mathbf {x})=(\mathcal {A}^{(2)}\times _{2}\mathbf {x})^{\rm T}\).

Denote \(\mathbf {Q}(\mathbf {x})=(\mathbf {I}-(1-\alpha )\mathbf {M_1}(\mathbf {x})\mathbf {M_2}(\mathbf {x}))^{-1}\), \(\mathbf {G}(\mathbf {x})=(\mathbf {Q}(\mathbf {\mathbf {x}}))^{-1}=\mathbf {I}-(1-\alpha )\mathbf {M_1}(\mathbf {x})\mathbf {M_2}(\mathbf {x})\) and let \(\mathbf {L}(\mathbf {x})=\mathbf {M}_1(\mathbf {x})\mathbf {M}_2(\mathbf {x})\), we have:

$$\begin{aligned} \frac{{\rm d}\mathbf {F}(\mathbf {x})}{{\rm d}\mathbf {x}}=\frac{{\rm d}(\alpha \mathbf {Q}(\mathbf {x})\mathbf {p})}{{\rm d}\mathbf {x}}=\alpha \frac{{\rm d}\mathbf {Q}(\mathbf {x})}{{\rm d}\mathbf {x}}\mathbf {p} \end{aligned}$$
$$\begin{aligned} \frac{{\rm d}\mathbf {Q}(\mathbf {x})}{{\rm d}\mathbf {x}}=-\mathbf {Q}(\mathbf {x})\frac{{\rm d}\mathbf {G}(\mathbf {x})}{{\rm d}\mathbf {x}}\mathbf {Q}(\mathbf {x}) \end{aligned}$$
$$\begin{aligned} \frac{{\rm d}\mathbf {G}(\mathbf {x})}{{\rm d}\mathbf {x}}=\frac{{\rm d}(\mathbf {I}-(1-\alpha )\mathbf {M}_1\mathbf {M}_2)}{{\rm d}\mathbf {x}}=-(1-\alpha )\frac{{\rm d}L(\mathbf {x})}{{\rm d}\mathbf {x}} \end{aligned}$$
$$\begin{aligned} \frac{{\rm d}\mathbf {L}(\mathbf {x})}{{\rm d}\mathbf {x}}=\frac{{\rm d}\mathbf {M}_1(\mathbf {x})\mathbf {M}_2(\mathbf {x})}{{\rm d}\mathbf {x}}=\frac{{\rm d}\mathbf {M}_1(\mathbf {x})}{{\rm d}\mathbf {x}}\mathbf {M}_2(\mathbf {x})+\mathbf {M}_1(\mathbf {x})\frac{{\rm d}\mathbf {M}_2(\mathbf {x})}{{\rm d}\mathbf {x}} \end{aligned}$$

In addition, if rewrite

$$\begin{aligned} \mathbf {M}_1(\mathbf {x})= & {} \mathcal {A}^{(1)}\times _{2}\mathbf {x}\\= & {} \left( \begin{array}{ccc} \sum ^{n_{1}}_{j}a^{(1)}_{1,j,1}x_{j} &{} \cdots &{}\sum ^{n_{1}}_{j}a^{(1)}_{1,j,n_{2}}x_{j} \\ \vdots &{} \ddots &{} \vdots \\ \sum ^{n_{1}}_{j}a^{(1)}_{n_{1},j,1}x_{j} &{} \cdots &{} \sum ^{n_{1}}_{j}a^{(1)}_{n_{1},j,n_{2}}x_{j} \end{array}\right) \\= & {} \left( \begin{array}{ccccccc} a^{(1)}_{1,1,1} &{} \cdots &{} a^{(1)}_{1,n_{1},1} &{} \cdots &{} a^{(1)}_{1,1,n_{2}} &{} \cdots &{} a^{(1)}_{1,n_{1},n_{2}} \\ \vdots &{} \ddots &{} \vdots &{} \cdots &{} \vdots &{} \ddots &{} \vdots \\ a^{(1)}_{n_{1},1,1} &{} \cdots &{} a^{(1)}_{n_{1},n_{1},1} &{} \cdots &{} a^{(1)}_{n_{1},1,n_{2}} &{} \cdots &{} a^{(1)}_{n_{1},n_{1},n_{2}} \end{array}\right) \; (\mathbf {x}\otimes \mathbf {I}_{n_{2}})\\= & {} \mathcal {A}^{(1)}(1) \; (\mathbf {x}\otimes \mathbf {I}) \end{aligned}$$

and

$$\begin{aligned} \mathbf {M}_2(\mathbf {x})= & {} (\mathcal {A}^{(2)}\times _{2}\mathbf {x})^{\rm T}\\= & {} \left( \begin{array}{ccccccc} a^{(2)}_{1,1,1} &{} \cdots &{} a^{(2)}_{1,n_{1},1} &{} \cdots &{} a^{(2)}_{n_{1},1,1} &{} \cdots &{} a^{(2)}_{n_{1},n_{1},1} \\ \vdots &{} \ddots &{} \vdots &{} \cdots &{} \vdots &{} \ddots &{} \vdots \\ a^{(2)}_{1,1,n_{2}} &{} \cdots &{} a^{(1)}_{1,n_{1},n_{2}} &{} \cdots &{} a^{(2)}_{n_{1},1,n_{2}} &{} \cdots &{} a^{(2)}_{n_{1},n_{1},n_{2}} \end{array}\right) (\mathbf {x}\otimes \mathbf {I}_{n_{1}})\\= \; & {} \mathcal {A}^{(2)}(3) \; (\mathbf {x}\otimes \mathbf {I}) \end{aligned}$$

where \(\mathcal {A}^{(1)}(1)\) is unfolding of tensor \(\mathcal {A}^{(1)}\) from 1st direction, \(\mathcal {A}^{(2)}(3)\) is the unfolding of tensor \(\mathcal {A}^{(2)}\) from 3rd direction, we may get

$$\begin{aligned} \frac{{\rm d}\mathbf {M}_{1}(\mathbf {x})}{{\rm d}\mathbf {x}}= & {} \; \mathcal {A}^{(1)}(1)\mathbf {I} \\ \frac{{\rm d}\mathbf {M}_{2}(\mathbf {x})}{{\rm d}\mathbf {x}}= & {} \; \mathcal {A}^{(2)}(3)\mathbf {I} \end{aligned}$$

Then

$$\begin{aligned} \Vert \frac{{\rm d}\mathbf {L}(\mathbf {x})}{{\rm d}\mathbf {x}}\Vert _{1}\le & {} \; \Vert \frac{{\rm d}\mathbf {M}_{1}(\mathbf {x})}{\mathbf {x}}\Vert _{1}\Vert \mathbf {M}_{2}(\mathbf {x})\Vert +\Vert \mathbf {M}_{1}(\mathbf {x})\Vert \Vert \frac{{\rm d}\mathbf {M}_{2}(\mathbf {x})}{{\rm d}\mathbf {x}}\Vert _{1}\\= & {} \; \Vert \frac{{\rm d}\mathbf {M}_{1}(\mathbf {x})}{{\rm d}\mathbf {x}}\Vert _{1}+\Vert \frac{{\rm d}\mathbf {M}_{2}(\mathbf {x})}{{\rm d}\mathbf {x}}\Vert _{1}=2 \end{aligned}$$

In addition, we may also get

$$\begin{aligned} \Vert \mathbf {Q}(\mathbf {x})\Vert _1= & {} \; \Vert (\mathbf {I}-(1-\alpha )\mathbf {M_1}(\mathbf {x})\mathbf {M_2}(\mathbf {x}))^{-1}\Vert _1 \\\le & {} \frac{1}{1-\Vert (1-\alpha )\mathbf {M_1}(\mathbf {x})\mathbf {M_2}(\mathbf {x})\Vert _1}\\= & {} \frac{1}{1-(1-\alpha )} \end{aligned}$$

Therefore, we have

$$\begin{aligned} \Vert \frac{{\rm d}\mathbf {F}(\mathbf {x})}{{\rm d}\mathbf {x}}\Vert _1= & {} \; \Vert (1-\alpha )\mathbf {Q}(\mathbf {x})\frac{{\rm d}\mathbf {L}(\mathbf {x})}{{\rm d}x}\mathbf {Q}(\mathbf {x})\alpha \mathbf {p}\Vert _{1}\\= & {} \; (1-\alpha ) \alpha \Vert \mathbf {Q}(\mathbf {x})\frac{{\rm d}\mathbf {L}(\mathbf {x})}{{\rm d}\mathbf {x}}\mathbf {Q}(\mathbf {x})\mathbf {p}\Vert _1\\\le & {} \; 2(1-\alpha ) \alpha \frac{1}{[1-(1-\alpha )]^{2}}=\frac{2-2\alpha }{\alpha } \end{aligned}$$

In conclusion, when \(\alpha >\frac{2}{3}\), \(\Vert \frac{{\rm d}F(\mathbf {x})}{{\rm d}\mathbf {x}}\Vert _1<1\), it is easy to see that the mapping F is a contract mapping. From the Banach fixed point theorem, the Eq. (7) converges to a unique fixed point \(\mathbf {x}_*\) which means the algorithm 1 converges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Pan, J., Zhang, S. et al. Multiple networks modules identification by a multi-dimensional Markov chain method. Netw Model Anal Health Inform Bioinforma 4, 32 (2015). https://doi.org/10.1007/s13721-015-0106-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-015-0106-1

Keywords

Navigation