Skip to main content
Log in

Traffic density on corridors subject to incidents: models for long-term congestion management

  • Research Paper
  • Published:
EURO Journal on Transportation and Logistics

Abstract

The purpose of this research is to provide a faster and more efficient method to determine traffic density behavior for long-term congestion management using minimal statistical information. Applications include road work, road improvements, and route choice. To this end, this paper adapts and generalizes two analytical models (for non-peak and peak hours) for the probability mass function of traffic density for a major highway. It then validates the model against real data. The studied corridor has a total of 36 sensors, 18 in each direction, and the traffic experiences randomly occurring service deterioration due to accidents and inclement weather such as snow and thunderstorms. We base the models on queuing theory, and we compare the fundamental diagram with the data. This paper supports the validity of the models for each traffic condition under certain assumptions on the distributional properties of the associated random parameters. It discusses why these assumptions are needed and how they are determined. Furthermore, once the models are validated, different scenarios are presented to demonstrate traffic congestion behavior under various deterioration levels, as well as the estimation of traffic breakdown. These models, which account for non-recurrent congestion, can improve decision making without the need for extensive datasets or time-consuming simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alfa A, Neuts M (1995) Modelling vehicular traffic using the discrete time Markovian arrival process. Transp Sci 29:109–117

    Google Scholar 

  • Anbaroglu B, Heydecker B, Cheng T (2014) Spatio-temporal clustering for non-recurrent traffic congestion detection on urban road networks. Transp Res Part C: Emerg Technol 48:47–65

    Google Scholar 

  • Arnesen P, Hjelkrem OA (2018) An estimator for traffic breakdown probability based on classification of transitional breakdown events. Transp Sci 52(3):593–602. https://doi.org/10.1287/trsc.2017.0776

    Article  Google Scholar 

  • Baykal-Gürsoy M, Xiao W (2004) Stochastic decomposition in M/M/\(\infty \) queues with Markov-modulated service rates. Queueing Syst 48:75–88

    Google Scholar 

  • Baykal-Gürsoy M, Duan Z, Xu H (2009a) Stochastic models of traffic flow interrupted by incidents. IFAC Proc Vol 42(15):442–449

    Google Scholar 

  • Baykal-Gürsoy M, Xiao W, Ozbay K (2009b) Modeling traffic flow interrupted by incidents. Eur J Oper Res 195(1):127–138

    Google Scholar 

  • Baykal-Gürsoy M, Figueroa Candia M, Duan Z (2019) Completion times on jobs on two-state service processes and their asymptotic behavior. under review

  • Celikoglu HB (2014) Dynamic classification of traffic flow patterns simulated by a switching multimode discrete cell transmission model. IEEE Trans Intell Transp Syst 15(6):2539–2550

    Google Scholar 

  • Celikoglu HB, Silgu MA (2016) Extension of traffic flow pattern dynamic classification by a macroscopic model using multivariate clustering. Transp Sci 50(3):966–981

    Google Scholar 

  • Cheah J, Smith J (1994) Generalized M/G/C/C state dependent queuing models and pedestrian traffic flows. Queueing Syst 15:365–385

    Google Scholar 

  • Chen Z, Liu XC, Zhang G (2016) Non-recurrent congestion analysis using data-driven spatiotemporal approach for information construction. Transp Res Part C Emerg Technol 71:19–31

    Google Scholar 

  • Chiou S-W (2016) A robust urban traffic network design with signal settings. Inf Sci 334:144–160

    Google Scholar 

  • Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res Part B Methodol 28(4):269–287

    Google Scholar 

  • Daganzo CF (2006) In traffic flow, cellular automata= kinematic waves. Transp Res Part B Methodol 40(5):396–403

    Google Scholar 

  • Dailey DJ (1999) A statistical algorithm for estimating speed from single loop volume and occupancy measurements. Transp Res Part B Methodol 33(5):313–322

    Google Scholar 

  • Darroch GNJN, Morris R (1964) Queues for vehicle-actuated traffic light. Oper Res 12:882–895

    Google Scholar 

  • Dong J, Mahmassani HS (2012) Stochastic modeling of traffic flow breakdown phenomenon: application to predicting travel time reliability. IEEE Trans Intell Transp Syst 13(4):1803–1809

    Google Scholar 

  • Dunne MC (1967) Traffic delays at a signalized intersection with binomial arrivals. Transp Sci 1:24–31

    Google Scholar 

  • Gazis DC (2006) Traffic theory, vol 50. Springer, Berlin

    Google Scholar 

  • Han Y, Ahn S (2018) Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle. Transp Res Part B Methodol 107:146–166

    Google Scholar 

  • Heidemann D (July 1996) A queueing theory approach to speed-flow-density relationships. In Proceedings of the 13th International Symposium on Transportation and Traffic Theory, France

  • Heidemann D (2001) A queueing theory model of nonstationary traffic flow. Transp Sci 35:405–412

    Google Scholar 

  • Jain R, Smith J (1997) Modeling vehicular traffic flow using M/G/C/C state dependent queueing models. Transp Sci 31:324–336

    Google Scholar 

  • Keilson J, Servi L (1993) The matrix M/M/\(\infty \) system: retrial models and Markov modulated sources. Adv Appl Prob 25:453–471

    Google Scholar 

  • Kerner BS, Klenov SL, Wolf DE (2002) Cellular automata approach to three-phase traffic theory. J Phys A Math Gen 35(47):9971

    Google Scholar 

  • Kurzhanskiy AA (2009) Set-valued estimation of freeway traffic density. IFAC Proc Vol 42(15):271–277

    Google Scholar 

  • Kwon J, Mauch M, Varaiya P (2006) Components of congestion: Delay from incidents, special events, lane closures, weather, potential ramp metering gain, and excess demand. Transportation Research Record: Journal of the Transportation Research Board, 1959(1959):84–91. ISSN 0361-1981. https://doi.org/10.3141/1959-10. http://trrjournalonline.trb.org/doi/10.3141/1959-10

  • Laharotte PA, Billot R, El Faouzi NE (2017) Detection of non-recurrent road traffic events based on clustering indicators. In: ESANN

  • Lehoczky J (1972) Traffic intersection control and zero-switch queues. J Appl Prob 9:382–395

    Google Scholar 

  • Lighthill M, Whitham G (1955) On kinematic waves: II. A theory of traffic on long crowded roads. In: Proc. Roy. Soc. London Ser. A 229, pp 317–345

  • Maerivoet S, De Moor B (2005) Cellular automata models of road traffic. Phys Rep 419(1):1–64

    Google Scholar 

  • Massey FJ Jr (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Google Scholar 

  • May A, Keller H (1967) Non-integer car-following models. Highw Res Rec 199:19–32

    Google Scholar 

  • Muñoz L, Sun X, Horowitz R, Alvarez L (2003) Traffic density estimation with the cell transmission model. In: Proceedings of the 2003 American Control Conference, 2003., volume 5, pp 3750–3755

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. Journal de Physique I 2(12):2221–2229

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Google Scholar 

  • Newell G (1965) Approximation methods for queues with application to the fixed-cycle traffic light. SIAM Rev 7(2):223–240

    Google Scholar 

  • Newell G (1971) Applications of queueing theory. Chapman and Hall, London

    Google Scholar 

  • Newell GF (1993) A simplified theory of kinematic waves in highway traffic, part I: general theory. Transp Res Part B Methodol 27(4):281–287

    Google Scholar 

  • NOAA. National climatic data center. Accesed 2015–2016

  • Olver FW (2010) NIST handbook of mathematical functions hardback and CD-ROM. Cambridge University Press, Cambridge

    Google Scholar 

  • Panichpapiboon S, Leakkaw P (2017) Traffic density estimation: a mobile sensing approach. IEEE Commun Mag 55(12):126–131

    Google Scholar 

  • Polson N, Sokolov V (2017) Deep learning for short-term traffic flow prediction. Transp Res Part C Emerg Technol 79:1–17

    Google Scholar 

  • Richards P (1956) Shock waves on the highway. Oper Res 4:42–51

    Google Scholar 

  • Ross S (1996) Stochastic processes, vol 2. Wiley, New York

    Google Scholar 

  • Schrank D, Eisele B, Lomax T, Bak J (2015) Urban mobility scorecard. College Station: Texas A&M Transportation Institute and INRIX (August)

  • Skabardonis A, Petty K, Varaiya P, Bertini R (1998) Evaluation of the Freeway Service Patrol (FSP) in Los Angeles, ucb-its-prr-98-31. Technical report, California PATH Research Report, Institute of Transportation Studies, University of California, Berkeley

  • Skabardonis A, Petty K, Varaiya P (2003) Measuring recurrent and non-recurrent traffic congestion. In: Proc. of the 82th Annual Meeting of the Transportation Research Board. volume CD-ROM, Washington D.C

    Google Scholar 

  • Tanner J (1953) A problem of interface between two queues. Biometrica 40:58–69

    Google Scholar 

  • Thakur G. S, Huiz P, Helmy A (2012) Modeling and characterization of urban vehicular mobility using web cameras. In: Proceedings of the 2012 IEEE Conference on Computer Communications Workshop, pp 262–267

  • Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805

    Google Scholar 

  • Tricomi FG, Erdélyi A (1951) The asymptotic expansion of a ratio of gamma functions. Pac J Math 1(1):133–142

    Google Scholar 

  • Vandaele N, VanWoensel T, Verbruggen N (2000) A queueing based traffic flow model. Transp Res D Transp Environ 5:121–135

    Google Scholar 

  • Wang S, Ahmed N (2017) Dynamic model of urban traffic and optimum management of its flow and congestion. Dyn Syst Appl 26(3–4):575–587

    Google Scholar 

  • Zhang S, Wu G, Costeira JP, Moura JM (2017) Understanding traffic density from large-scale web camera data. arXiv preprint arXiv:1703.05868

  • Zheng J, Liu HX (2017) Estimating traffic volumes for signalized intersections using connected vehicle data. Transp Res Part C Emerg Technol 79:347–362

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Peter J. Jin for providing the data and to Marcelo Figueroa-Candia for helping with data preprocessing. The first author would like to thank CNPq (Brazilian National Council for Scientific and Technological Development) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Baykal-Gürsoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Proposition 1

We will derive the probability mass function of the random number of cars on a segment from Eqs. 1, 4, 5, 9, 10, and 11.

$$\begin{aligned}&P\{X=k\}\\&\quad =P\{X_\phi +Y=k\} = \sum _{q=0}^{k}P\{X_\phi =k-q\}\cdot P\{Y=q\}\\&\quad =P\{X_\phi =k\}\cdot P\{Y=0\}\\&\qquad +\sum _{q=1}^{k}P\{X_\phi =k-q\}\cdot (p \cdot P\{Y_1=q\} +(1-p)\cdot P\{Y_2=q\})\\&\quad =\frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^k}{k!}\cdot \left[ p\cdot \left( 1+\frac{\varGamma (b)}{\varGamma (a)}(e^{-c}-1)\right) +(1-p)e^{-c}\right] \\&\qquad +\sum _{q=1}^{k}\frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^{k-q}}{(k-q)!}\left[ p\cdot \left( \frac{\varGamma (b)}{\varGamma (a)}\frac{(e^{-c}c^q)}{q!}\right) +(1-p)\frac{(e^{-c}c^q)}{q!}\right] \\&\quad =\frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^k}{k!}\cdot \left[ e^{-c}\left( 1+p\left( \frac{\varGamma (b)}{\varGamma (a)} - 1\right) \right) +p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) \right] \\&\qquad +\left( 1+p\left( \frac{\varGamma (b)}{\varGamma (a)}-1\right) \right) \sum _{q=1}^{k}\frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^{k-q}}{(k-q)!}\cdot \frac{e^{-c}c^q}{q!}\\&\quad =\frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^k}{k!}\cdot \left[ e^{-c}\left( 1+p\left( \frac{\varGamma (b)}{\varGamma (a)}-1\right) \right) +p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) \right] \\&\qquad +\left( 1+p\left( \frac{\varGamma (b)}{\varGamma (a)}-1\right) \right) \sum _{q=1}^{k}\frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^{k-q}}{(k-q)!}\cdot \frac{e^{-c}c^q}{q!}. \end{aligned}$$

Substituting \(\left( 1-p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) \right) = m\), we have

$$\begin{aligned} P\{X=k\}=&\frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^k}{k!}\cdot \left[ e^{-c}m +(1-m)\right] +m\\&\cdot \frac{e^{-(\lambda /\mu +c)}[(\lambda /\mu +c)^k-(\lambda /\mu )^k]}{k!}\\ =&(1-m)\cdot \frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^k}{k!}\\&+m\left( \frac{e^{-(\lambda /\mu +c)}[(\lambda /\mu +c)^k-(\lambda /\mu )^k]}{k!}+\frac{e^{-\lambda /\mu +c}\cdot (\lambda /\mu )^k}{k!}\right) \\ =&(1-m)\cdot \frac{e^{-\lambda /\mu }\cdot (\lambda /\mu )^k}{k!}+m\left( \frac{e^{-(\lambda /\mu +c)}(\lambda /\mu +c)^k}{k!}\right) . \end{aligned}$$

Therefore

$$\begin{aligned} P\{X=k\}=p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) X_g+\left( 1-p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) \right) X_b. \end{aligned}$$

Now we will show that \(p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) \) is approximately equal to \(\frac{r}{r+f}\) for small a and b.

Claim: \(p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) \approx \frac{r}{r+f}\) for small a and b.

For \(x>0,\)

$$\begin{aligned} \varGamma (x) = \frac{\varGamma (x+1)}{x}. \end{aligned}$$

The above relation for \(x=a=\frac{f}{\mu }\) and \(x=b=\frac{f}{\mu } + \frac{r}{\mu '},\) implies

$$\begin{aligned} \frac{\varGamma (b)}{\varGamma (a)} = \frac{\frac{f}{\mu }}{\frac{f}{\mu } + \frac{r}{\mu '}} \cdot \frac{\varGamma (b+1)}{\varGamma (a+1)}. \end{aligned}$$

Using the approximation (8) for \(z=1\), since \(a \ll 1,\)\(b\ll 1\), and \(b-a \ll 1\), one can deduce that \( \frac{\varGamma (b+1)}{\varGamma (a+1)}\) is approximately equal to 1. Thus

$$\begin{aligned} \frac{\varGamma (b)}{\varGamma (a)} \approx \frac{\frac{f}{\mu }}{\frac{f}{\mu } + \frac{r}{\mu '}}. \end{aligned}$$

Because \(p= \frac{r + f\frac{\mu '}{\mu }}{r+f}\), the result follows

$$\begin{aligned} p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) \approx&\left( \frac{r + f\frac{\mu '}{\mu }}{r+f} \right) \left( 1- \frac{\frac{f}{\mu }}{\frac{f}{\mu } + \frac{r}{\mu '}}\right) \\ =&\left( \frac{r\mu + f\mu '}{\mu (r+f)} \right) \left( \frac{\frac{r}{\mu '}}{\frac{f}{\mu } + \frac{r}{\mu '}}\right) = \frac{r}{r+f}. \end{aligned}$$

As a result, the probability mass function of density tends to the mixture \(P\{X=k\}=\frac{r}{r+f} X_g+\frac{f}{r+f}X_b,\) where \(X_g\) follow a Poisson with parameter \((\lambda /\mu )\) and \(X_b\) follow a Poisson with parameter \((\lambda '/\mu ')\).

The error of the approximation can be derived similarly to the previous proof

$$\begin{aligned} Error&= p\left( 1-\frac{\varGamma (b)}{\varGamma (a)}\right) -\frac{r}{r+f}\\&=\left( \frac{r\mu + f\mu '}{\mu (r+f)} \right) \left( 1-\frac{\frac{f}{\mu }}{\frac{f}{\mu } + \frac{r}{\mu '}} \cdot \frac{\varGamma (b+1)}{\varGamma (a+1)}\right) -\frac{r}{r+f}\\&=\left( \frac{r\mu + f\mu '}{\mu (r+f)} \right) - \left( \frac{f \mu '}{\mu (r+f)} \cdot \frac{\varGamma (b+1)}{\varGamma (a+1)}\right) -\frac{\mu r}{\mu (r+f)}\\&=\frac{f}{r+f}\cdot \frac{\mu '}{\mu } \cdot \left( 1-\frac{\varGamma (b+1)}{\varGamma (a+1)}\right) . \end{aligned}$$

One can see that when f and r are smaller in comparison to \(\mu \) and \(\mu '\), respectively, this approximation of the weight of the mixture holds. Figure 17 shows the error for different ratios between f and \(\mu \) and r and \(\mu '\). We can see that when they are around \(1\%\) of the \(\mu \) and \(\mu '\), the error is on the order of \(10^{-3}\), and it decreases to lower than \(10^{-5}\) when the ratios drop to \(0.01\%\).

Fig. 17
figure 17

Error between the algebraically found weight and \(\frac{r}{r+f}\) for different ratios of f and \(\mu \), and r and \(\mu '\)

Appendix 2: Tables containing AIC for each sensor

See Appendix Tables 9 and 10.

Table 9 Full list of the adapted AIC comparison between model and commonly used distributions during non-peak hours
Table 10 Full list of the adapted AIC comparison between model and commonly used distributions during peak hours

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes Gerum, P.C., Benton, A.R. & Baykal-Gürsoy, M. Traffic density on corridors subject to incidents: models for long-term congestion management. EURO J Transp Logist 8, 795–831 (2019). https://doi.org/10.1007/s13676-019-00149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13676-019-00149-2

Keywords

Navigation