Skip to main content

Advertisement

Log in

The Skin Microbiome in Inflammatory Skin Diseases

  • Infectious Disease and Dermatology (C Beard and K Krishnamurthy, SECTION EDITORS)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ongoing investigations of the human skin microbiome strongly suggest a connection to skin diseases and skin health. This review provides an overview of recent literature on the skin microbiome in relation to skin diseases, with a specific focus on common inflammatory skin conditions, such as atopic dermatitis, psoriasis, hidradenitis suppurativa, acne, and rosacea.

Recent Findings

In healthy subjects, the skin microbiome mediates fundamental processes involving the immune response and epidermal development and differentiation. Microbiome characteristics in inflammatory skin diseases differ depending on disease, as both topography and disease severity and even host genetics seem to influence the microbiome composition. Not only the bacterial species are important but also different strains within the same species can act differently, where some can be commensal and protect against microbial dysbiosis, whereas others can induce skin inflammation and immune reactions in humans.

Summary

The interplay between skin microbes, host genetics, and the immune system is anticipated to be of importance for both the development and severity of many skin diseases. However, the causality of specific pathogens and the effect on the pathogenesis in relation to inflammatory skin diseases is yet to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol. 2013;14(10):978–85.

    Article  CAS  PubMed  Google Scholar 

  3. •• Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, et al. Commensal microbiota modulate gene expression in the skin. Microbiome. 2018;6(1):20. A murine study suggesting the skin microbiome to mediate two fundamental processes in the skin: the immune response and epidermal development.

  4. Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019;20(8). https://doi.org/10.3390/ijms20081811.

  5. Sanford JA, Gallo RL. Functions of the skin microbiota in health and disease. Semin Immunol. 2013;25(5):370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Consortum HMP. A framework for human microbiome research. Nature. 2012;486(7402):215–21.

    Article  CAS  Google Scholar 

  7. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Consortum HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  CAS  Google Scholar 

  11. •• Oh J, Byrd AL, Park M, Kong HH, Segre JA. Temporal stability of the human skin microbiome. Cell. 2016;165(4):854–66. A longitudinal study demonstrating that site, individuality, and phylogeny are decisive for microbiome stability.

  12. • Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–55. A review describing the healthy skin microbial communities in different skin sites, and relating the skin microbiome with acne, AD and primary immunodeficient individuals.

  13. Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. •• Byrd AL, Deming C, SKB C, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397). https://doi.org/10.1126/scitranslmed.aal4651. A study demonstratingS. aureusat a strain level was associated to AD severity.

  15. •• Clausen ML, Agner T, Lilje B, Edslev SM, Johannesen TB, Andersen PS. Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis. JAMA Dermatol. 2018;154(3):293–300. A study suggesting a global influence of the microbiome in AD patients. They found non-lesional skin in AD patients to be associated with filaggrin mutation status.

  16. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chng KR, Tay AS, Li C, Ng AH, Wang J, Suri BK, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106.

    Article  CAS  PubMed  Google Scholar 

  18. •• Ring HC, Sigsgaard V, Thorsen J, Fuursted K, Fabricius S, Saunte DM, et al. The microbiome of tunnels in hidradenitis suppurativa patients. J Eur Acad Dermatol Venereol. 2019;33(9):1775–80. https://doi.org/10.1111/jdv.15597. A study documenting significant differences in skin microbiome of non-affected HS patients compared with healthy controls.

  19. •• Ring HC, Thorsen J, Saunte DM, Lilje B, Bay L, Riis PT, et al. The Follicular Skin Microbiome in Patients With Hidradenitis Suppurativa and Healthy Controls. JAMA Dermatol. 2017;153(9):897–905. A study showing that the follicular skin microbiome in HS patients expresses dysbiosis. Together with ref. [18], this study represents the foundation of microbiome research in HS patients.

  20. • Ring HC, Bay L, Kallenbach K, Miller IM, Prens E, Saunte DM, et al. Normal Skin Microbiota is altered in pre-clinical hidradenitis suppurativa. Acta Derm Venereol. 2017;97(2):208–13. A study on HS that found significantly different axillary skin microbiota in HS patients compared with controls, indicating that microbiota may play an important role in the early course of the disease.

  21. •• Langan EA, Kunstner A, Miodovnik M, Zillikens D, Thaci D, Baines JF, et al. Combined culture and metagenomic analyses reveal significant shifts in the composition of the cutaneous microbiome in psoriasis. Br J Dermatol. 2019;181(6):1254–64. https://doi.org/10.1111/bjd.17989. A study on psoriasis where shifts in bacteria composition with increased abundance ofFirmicuteswere found, most pronounced in lesional skin.

  22. Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lewis DJ, Chan WH, Hinojosa T, Hsu S, Feldman SR. Mechanisms of microbial pathogenesis and the role of the skin microbiome in psoriasis: a review. Clin Dermatol. 2019;37(2):160–6.

    Article  PubMed  Google Scholar 

  24. Barnard E, Shi B, Kang D, Craft N, Li H. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep. 2016;6:39491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leyden JJ, McGinley KJ, Vowels B. Propionibacterium acnes colonization in acne and nonacne. Dermatology. 1998;196(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kasimatis G, Fitz-Gibbon S, Tomida S, Wong M, Li H. Analysis of complete genomes of Propionibacterium acnes reveals a novel plasmid and increased pseudogenes in an acne associated strain. Biomed Res Int. 2013;2013:918320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. McDowell A, Nagy I, Magyari M, Barnard E, Patrick S. The opportunistic pathogen Propionibacterium acnes: insights into typing, human disease, clonal diversification and CAMP factor evolution. PloS One. 2013;8(9):e70897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang D, Shi B, Erfe MC, Craft N, Li H. Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Sci Transl Med. 2015;7(293):293ra103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Holmes AD. Potential role of microorganisms in the pathogenesis of rosacea. J Am Acad Dermatol. 2013;69(6):1025–32.

    Article  PubMed  Google Scholar 

  30. Lazaridou E, Giannopoulou C, Fotiadou C, Vakirlis E, Trigoni A, Ioannides D. The potential role of microorganisms in the development of rosacea. Journal der Deutschen Dermatologischen Gesellschaft =. J German Soc Dermatol. 2011;9(1):21–5.

    Google Scholar 

  31. Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio. 2015;6(5):e01578–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi B, Bangayan NJ, Curd E, Taylor PA, Gallo RL, Leung DYM, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016;138(4):1233–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Somerville DA. The normal flora of the skin in different age groups. Br J Dermatol. 1969;81(4):248–58.

    Article  CAS  PubMed  Google Scholar 

  34. Giacomoni PU, Mammone T, Teri M. Gender-linked differences in human skin. J Dermatol Sci. 2009;55(3):144–9.

    Article  CAS  PubMed  Google Scholar 

  35. Leung MH, Wilkins D, Lee PK. Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Sci Rep. 2015;5:11845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hospodsky D, Pickering AJ, Julian TR, Miller D, Gorthala S, Boehm AB, et al. Hand bacterial communities vary across two different human populations. Microbiology. 2014;160(Pt 6):1144–52.

    Article  CAS  PubMed  Google Scholar 

  37. SanMiguel A, Grice EA. Interactions between host factors and the skin microbiome. Cell Mol Life Sci. 2015;72(8):1499–515.

    Article  CAS  PubMed  Google Scholar 

  38. •• Dimitriu PA, Iker B, Malik K, Leung H, Mohn WW, Hillebrand GG. New insights into the intrinsic and extrinsic factors that shape the human skin microbiome. mBio. 2019;10(4). https://doi.org/10.1128/mBio.00839-19. A study that identified a group of variables, which in combination explained up to 20% of the variation in skin microbiome composition.

  39. Ross AA, Doxey AC, Neufeld JD. The skin microbiome of cohabiting couples. mSystems. 2017;2(4). https://doi.org/10.1128/mSystems.00043-17.

  40. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. eLife. 2013;2:e00458.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008;105(46):17994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A. 2010;107(14):6477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Phan K, Barash M, Spindler X, Gunn P, Roux C. Retrieving forensic information about the donor through bacterial profiling. Int J Legal Med. 2020;134(1):21–9. https://doi.org/10.1007/s00414-019-02069-2.

  44. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–61.

    Article  CAS  PubMed  Google Scholar 

  45. Gallo RL, Nakatsuji T. Microbial symbiosis with the innate immune defense system of the skin. J Investig Dermat. 2011;131(10):1974–80.

    Article  CAS  Google Scholar 

  46. Clausen ML, Agner T. Antimicrobial peptides, infections and the skin barrier. Curr Probl Dermatol. 2016;49:38–46.

    Article  PubMed  Google Scholar 

  47. •• Hanson MA, Dostalova A, Ceroni C, Poidevin M, Kondo S, Lemaitre B. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife. 2019;8. https://doi.org/10.7554/eLife.44341. A study that demonstrated certain AMPs to act against specific pathogenic bacteria.

  48. Christensen GJ, Bruggemann H. Bacterial skin commensals and their role as host guardians. Benefic Microbes. 2014;5(2):201–15.

    Article  CAS  Google Scholar 

  49. Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y, et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PloS One. 2013;8(2):e55380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378). https://doi.org/10.1126/scitranslmed.aah4680. A study that found strains of CoNS collected from healthy and AD subjects to exhibit different antimicrobial activity againstS. aureus.

  51. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–9.

    Article  CAS  PubMed  Google Scholar 

  52. •• Lee DC, Kananurak A, Tran MT, Connolly PA, Polage CR, Iwase T, et al. Bacterial colonization of the hospitalized newborn: competition between Staphylococcus aureus and Staphylococcus epidermidis. Pediatr Infect Dis J. 2019;38(7):682–6. A study of hospitalized infants that foundS. epidermidisto be protective againstS. aureuscolonization.

    Article  PubMed  PubMed Central  Google Scholar 

  53. •• Williams MR, Costa SK, Zaramela LS, Khalil S, Todd DA, Winter HL, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med. 2019;11(490). https://doi.org/10.1126/scitranslmed.aat8329. A study that found isolates from different coagulase-negative staphyloccoci on normal skin could inhibitS. aureusagr system and thereby its toxin production of coagulase-negative staphylococci (CoNS) such asStaphylococcus hominis,Staphylococcus warneri, andStaphylococcus capitisthat have strains with potent inhibitory activity againstS. aureusin AD patients.

  54. Otto M. Staphylococcus epidermidis--the ‘accidental’ pathogen. Nat Rev Microbiol. 2009;7(8):555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gittler JK, Krueger JG, Guttman-Yassky E. Atopic dermatitis results in intrinsic barrier and immune abnormalities: implications for contact dermatitis. J Allergy Clin Immunol. 2013;131(2):300–13.

    Article  CAS  PubMed  Google Scholar 

  57. • Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Prim. 2018;4(1):1. A comprehensive review on AD including epidemiology and pathophysiology.

  58. • Mathiesen SM, Thomsen SF. The prevalence of atopic dermatitis in adults: systematic review on population studies. Dermatol Online J. 2019;25(8). A recent review on prevalence of AD in adults including patients from 17 different countries. Large betweencountry variation and one-year prevalence were observed.

  59. Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90(5):525–30.

    Article  CAS  PubMed  Google Scholar 

  60. Totte JE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SG. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–95.

    Article  CAS  PubMed  Google Scholar 

  61. Allen HB, Vaze ND, Choi C, Hailu T, Tulbert BH, Cusack CA, et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol. 2014;150(3):260–5.

    Article  PubMed  Google Scholar 

  62. • Di Domenico EG, Cavallo I, Bordignon V, Prignano G, Sperduti I, Gurtner A, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: a pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep. 2018;8(1):9573. A study on children with mild to severe AD that found the strength of the S. aureusbiofilm to correlate with severity of skin lesion, suggesting S. aureus biofilm to play an important role in chronic colonization and disease severity.

  63. Lin YT, Wang CT, Chiang BL. Role of bacterial pathogens in atopic dermatitis. Clin Rev Allergy Immunol. 2007;33(3):167–77.

    Article  CAS  PubMed  Google Scholar 

  64. Travers JB. Toxic interaction between Th2 cytokines and Staphylococcus aureus in atopic dermatitis. J Invest Dermatol. 2014;134(8):2069–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams MR, Gallo RL. The role of the skin microbiome in atopic dermatitis. Curr Allergy Asthma Rep. 2015;15(11):65.

    Article  PubMed  CAS  Google Scholar 

  67. •• Meylan P, Lang C, Mermoud S, Johannsen A, Norrenberg S, Hohl D, et al. Skin Colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Invest Dermatol. 2017;137(12):2497–504. A study suggestingS. aureusas a causal factor in AD development.

  68. •• Kennedy EA, Connolly J, Hourihane JO, Fallon PG, WHI ML, Murray D, et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol. 2017;139(1):166–72. A study suggesting a protective role of commensalstaphylococciagainst later AD onset.

  69. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122(Pt 9):1285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6.

    Article  CAS  PubMed  Google Scholar 

  71. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.

    Article  CAS  PubMed  Google Scholar 

  72. Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol. 2005;174(12):8003–10.

    Article  CAS  PubMed  Google Scholar 

  73. Zouboulis CC, Del Marmol V, Mrowietz U, Prens EP, Tzellos T, Jemec GB. Hidradenitis suppurativa/acne inversa: criteria for diagnosis, severity assessment, classification and disease evaluation. Dermatology. 2015;231(2):184–90.

    Article  PubMed  Google Scholar 

  74. Nikolakis G, Liakou AI, Bonovas S, Seltmann H, Bonitsis N, Join-Lambert O, et al. Bacterial colonization in hidradenitis suppurativa/acne inversa: a cross-sectional study of 50 patients and review of the literature. Acta Derm Venereol. 2017;97(4):493–8.

    Article  CAS  PubMed  Google Scholar 

  75. Ring HC, Emtestam L. The microbiology of hidradenitis suppurativa. Dermatol Clin. 2016;34(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  76. Nikolakis G, Join-Lambert O, Karagiannidis I, Guet-Revillet H, Zouboulis CC, Nassif A. Bacteriology of hidradenitis suppurativa/acne inversa: a review. J Am Acad Dermatol. 2015;73(5 Suppl 1):S12–8.

    Article  PubMed  Google Scholar 

  77. Ring HC, Riis Mikkelsen P, Miller IM, Jenssen H, Fuursted K, Saunte DM, et al. The bacteriology of hidradenitis suppurativa: a systematic review. Exp Dermatol. 2015;24(10):727–31.

    Article  CAS  PubMed  Google Scholar 

  78. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509.

    Article  CAS  PubMed  Google Scholar 

  79. Tomi NS, Kranke B, Aberer E. Staphylococcal toxins in patients with psoriasis, atopic dermatitis, and erythroderma, and in healthy control subjects. J Am Acad Dermatol. 2005;53(1):67–72.

    Article  PubMed  Google Scholar 

  80. Thiboutot D, Gollnick H, Bettoli V, Dreno B, Kang S, Leyden JJ, et al. New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne group. J Am Acad Dermatol. 2009;60(5 Suppl):S1–50.

    Article  PubMed  Google Scholar 

  81. Saint-Leger D, Bague A, Cohen E, Chivot M. A possible role for squalene in the pathogenesis of acne. I. In vitro study of squalene oxidation. Br J Dermatol. 1986;114(5):535–42.

    Article  CAS  PubMed  Google Scholar 

  82. Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, et al. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009;18(10):821–32.

    Article  CAS  PubMed  Google Scholar 

  83. Picardo M, Ottaviani M, Camera E, Mastrofrancesco A. Sebaceous gland lipids. Dermato-endocrinology. 2009;1(2):68–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Investig Dermatol. 2013;133(9):2152–60.

    Article  CAS  PubMed  Google Scholar 

  85. Lee YB, Byun EJ, Kim HS. Potential role of the microbiome in acne: a comprehensive review. J Clin Med. 2019;8(7). https://doi.org/10.3390/jcm8070987.

  86. Szanto M, Dozsa A, Antal D, Szabo K, Kemeny L, Bai P. Targeting the gut-skin axis-probiotics as new tools for skin disorder management? Exp Dermatol. 2019;28(11):1210–18. https://doi.org/10.1111/exd.14016.

  87. • O'Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6(1):177. A recent review on acne vulgaris discussing the potential causal role of C. acnesin the pathogenesis of acne.

  88. Picardo M, Ottaviani M. Skin microbiome and skin disease: the example of rosacea. J Clin Gastroenterol. 2014;48(Suppl 1):S85–6.

    Article  PubMed  Google Scholar 

  89. Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21(12):660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Investig Dermatol. 2011;131(3):688–97.

    Article  CAS  PubMed  Google Scholar 

  91. •• Lacey N, Russell-Hallinan A, Zouboulis CC, Powell FC. Demodex mites modulate sebocyte immune reaction: possible role in the pathogenesis of rosacea. Br J Dermatol. 2018;179(2):420–30. A study that found Demodex mites modulate immune response, and suggested this to play a role in rosacea development.

  92. Group JFWW. Probiotics in food : health and nutritional properties and guidelines for evaluation : report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Cordoba, Argentina, 1-4 October 2001 [and] Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, 30 April -1 May 2002. Food, Agriculture Organization of the United N, World Health O, Joint FAOWHOECoEoH, Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid B, Joint FAOWHOWGoDGftEoPiF, editors. Rome [Italy]: Food and Agriculture Organization of the United Nations, World Health Organization; 2006.

  93. Kim SO, Ah YM, Yu YM, Choi KH, Shin WG, Lee JY. Effects of probiotics for the treatment of atopic dermatitis: a meta-analysis of randomized controlled trials. Ann Allergy Asthma Immunol. 2014;113(2):217–26.

    Article  PubMed  Google Scholar 

  94. Osborn DA, Sinn JK. Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst Rev. 2007;(4):Cd006475.

  95. Rabah H, Rosa do Carmo FL, Jan G. Dairy Propionibacteria: Versatile Probiotics. Microorganisms. 2017;5(2). https://doi.org/10.3390/microorganisms5020024.

  96. • Blanchet-Rethore S, Bourdes V, Mercenier A, Haddar CH, Verhoeven PO, Andres P. Effect of a lotion containing the heat-treated probiotic strain Lactobacillus johnsonii NCC 533 on Staphylococcus aureus colonization in atopic dermatitis. Clin Cosmet Investig Dermatol. 2017;10:249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8(3):162–73.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jonczyk-Matysiak E, Weber-Dabrowska B, Zaczek M, Miedzybrodzki R, Letkiewicz S, Lusiak-Szelchowska M, et al. Prospects of phage application in the treatment of acne caused by Propionibacterium acnes. Front Microbiol. 2017;8:164.

    Article  PubMed  PubMed Central  Google Scholar 

  99. •• Myles IA, Williams KW, Reckhow JD, Jammeh ML, Pincus NB, Sastalla I, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10). https://doi.org/10.1172/jci.insight.86955. A study that found improved outcomes in AD after treatment with Gram-negative bacteria strains from healthy subjects.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Line Brok Nørreslet.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Infectious Disease and Dermatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nørreslet, L.B., Agner, T. & Clausen, ML. The Skin Microbiome in Inflammatory Skin Diseases. Curr Derm Rep 9, 141–151 (2020). https://doi.org/10.1007/s13671-020-00297-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-020-00297-z

Keywords

Navigation