Skip to main content

Advertisement

Log in

The Role of the Skin Microbiome in Atopic Dermatitis

  • Allergens (RK Bush and JA Woodfolk, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a common skin disease that affects a large proportion of the population worldwide. The incidence of AD has increased over the last several decades along with AD’s burden on the physical and psychological health of the patient and family. However, current advances in understanding the mechanisms behind the pathophysiology of AD are leading to a hopeful outlook for the future. Staphylococcus aureus (S. aureus) colonization on AD skin has been directly correlated to disease severity but the functions of other members of the skin bacterial community may be equally important. Applying knowledge gained from understanding the role of the skin microbiome in maintaining normal skin immune function, and addressing the detrimental consequences of microbial dysbiosis in driving inflammation, is a promising direction for development of new treatments. This review discusses current preclinical and clinical research focused on determining how the skin microbiome may influence the development of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of very importance

  1. Beiber T. Mechanisms of disease atopic dermatitis. NEJM. 2008;358:12.

    Article  Google Scholar 

  2. Carroll CL, Balkrishnan R, Feldman SR, Fleischer AB, Manuel JC. The burden of atopic dermatitis: impact on the patient, family, and society. Pediatr Dermatol. 2005;22:8.

    Article  Google Scholar 

  3. Beikert FC, Langenbruch AK, Radtke MA, Kornek T, Purwins S, Augustin M. Willingness to pay and quality of life in patients with atopic dermatitis. Arch Dermatol Res. 2014;306:279–86.

    Article  CAS  PubMed  Google Scholar 

  4. Su JC, Kemp AS, Varigos GA, Nolan TM. Atopic eczema: its impact on the family and financial cost. Arch Dis Child. 1997;76:4.

    Article  Google Scholar 

  5. Kapoor R, Menon C, Hoffstad O, Bilker W, Leclerc P, Margolis DJ. The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. J Am Acad Dermatol. 2008;58:68–73.

    Article  PubMed  Google Scholar 

  6. Ring J, Kramer U, Schafer T, Behrendt H. Why are allergies increasing? Curr Opin Immunol. 2001;13:8.

    Google Scholar 

  7. Williams H, Stewart A, von Mutius E, Cookson W, Anderson HR, International Study of, A., Allergies in Childhood Phase, O., and Three Study, G. Is eczema really on the increase worldwide? J Allergy Clin Immunol. 2008;121:947–54. e915.

    Article  PubMed  Google Scholar 

  8. Kato A, Fukai K, Oiso N, Hosomi N, Murakami T, Ishii M. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol. 2003;148:665.

    Article  CAS  PubMed  Google Scholar 

  9. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441–6.

    Article  CAS  PubMed  Google Scholar 

  10. Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, Diaz-Lacava A, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol. 2006;118:214–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao LP, Di Z, Zhang L, Wang L, Ma L, Lv Y, et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol. 2012;26:572–7.

    Article  CAS  PubMed  Google Scholar 

  12. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127(773–786):e771–7.

    Google Scholar 

  13. Kawashima T, Noguchi E, Arinami T, Yamakawa-Kobayashi K, Nakagawa H, Otsuka F, et al. Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet. 1998;35:502–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tsunemi Y, Saeki H, Nakamura K, Sekiya T, Hirai K, Kakinuma T, et al. Interleukin-13 gene polymorphism G4257A is associated with atopic dermatitis in Japanese patients. J Dermatol Sci. 2002;30:100–7.

    Article  CAS  PubMed  Google Scholar 

  15. Eigenmann PA, Sicherer SH, Borkowski TA, Cohen BA, Sampson HA. Prevelance of IgE-mediated food allergy among children with atopic dermatitis. Pediatrics. 1998;101:6.

    Article  Google Scholar 

  16. Fuiano N, Fusilli S, Incorvaia C. House dust mite-related allergic diseases: role of skin prick test, atopy patch test, and RAST in the diagnosis of different manifestations of allergy. Eur J Pediatr. 2010;169:819–24.

    Article  PubMed  Google Scholar 

  17. Hong J, Buddenkotte J, Berger TG, Steinhoff M. Management of itch in atopic dermatitis. Semin Cutan Med Surg. 2011;30:71–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Leung DYM, Bieber T. Atopic dermatitis. Lancet. 2003;361:151–60.

    Article  PubMed  Google Scholar 

  19. Oyoshi MK, He R, Kumar L, Yoon J, Geha RS. Chapter 3 cellular and molecular mechanisms in atopic. Dermatitis. 2009;102:135–226.

    CAS  Google Scholar 

  20. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Grice EA, Segre JA. The skin microbiome. Nature reviews. Microbiology. 2011;9:244–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90:525–30.

    Article  CAS  PubMed  Google Scholar 

  23. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9. First study to use 16S rRNA sequencing to analyze the skin microbiome of normal versus atopic dermatitis patients.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133:2152–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tomida S, Nguyen L, Chiu BH, Liu J, Sodergren E, Weinstock GM, et al. Pan-genome and comparative genome analyses of propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome. mBio. 2013;4:e00003–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang Y, Kuo S, Shu M, Yu J, Huang S, Dai A, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014;98:411–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol. 1975;30:381–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514:59–64. Major study involving the use of metagenomics to define the skin microbiome.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346:7.

    Article  Google Scholar 

  30. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol. 2011;131:2026–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15:1377–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115–9. Demonstrated direct communication between skin commensal bacteria and host immune response in murine models.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130:2211–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wang Z, MacLeod DT, Di Nardo A. Commensal bacteria lipoteichoic acid increases skin mast cell antimicrobial activity against vaccinia viruses. J Immunol. 2012;189:1551–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y, Inoue S. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol. 2011;187:3230–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4:1431. Revolutionary study indentifying that microbial communities can penetrate and reside in deeper layers of the skin.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol. 2010;5:183–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol. 2013;195:1645–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130:192–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shu M, Wang Y, Yu J, Kuo S, Coda A, Jiang Y, et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One. 2013;8, e55380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gong JQ, Lin L, Lin T, Hao F, Zeng FQ, Bi ZG, et al. Skin colonization by Staphylococcus aureus in patients with eczema and atopic dermatitis and relevant combined topical therapy: a double-blind multicentre randomized controlled trial. Br J Dermatol. 2006;155:680–7.

    Article  CAS  PubMed  Google Scholar 

  42. Pascolini C, Sinagra J, Pecetta S, Bordignon V, De Santis A, Cilli L, et al. Molecular and immunological characterization of Staphylococcus aureus in pediatric atopic dermatitis: implications for prophylaxis and clinical management. Clin Dev Immunol. 2011;2011:718708.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25:2.

    Google Scholar 

  44. Hannula-Jouppi K, Laasanen SL, Heikkila H, Tuomiranta M, Tuomi ML, Hilvo S, et al. IgE allergen component-based profiling and atopic manifestations in patients with Netherton syndrome. J Allergy Clin Immunol. 2014;134:985–8.

    Article  CAS  PubMed  Google Scholar 

  45. Renner ED, Hartl D, Rylaarsdam S, Young ML, Monaco-Shawver L, Kleiner G, et al. Comel-Netherton syndrome defined as primary immunodeficiency. J Allergy Clin Immunol. 2009;124:536–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Oh J, Freeman AF, Program NCS, Park M, Sokolic R, Candotti F, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23:2103–14. Second major study analyzing how the skin microbiome composition is effected during disease states by 16S rRNA sequencing.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Knor T, Meholjic-Fetahovic A, Mehmedagic A. Stratum corneum hydration and skin surface pH in patients with atopic dermatitis. Acta Dermatovenerol Croat ADC. 2011;19:242–7.

    CAS  PubMed  Google Scholar 

  48. Rippke F, Schreiner V, Doering T, Maibach HI. Stratum corneum pH in atopic dermatitis: impact on skin barrier function and colonization with Staphylococcus Aureus. Am J Clin Dermatol. 2004;5:217–23.

    Article  PubMed  Google Scholar 

  49. Bhanu S, Francois PP, NuBe O, Foti M, Hartford OM, Vaudaux P, et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell Microbiol. 1999;1:17.

    Google Scholar 

  50. Cho SH, Strickland I, Boguniewicz M, Leung DY. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001;108:269–74.

    Article  CAS  PubMed  Google Scholar 

  51. Dean SN, Bishop BM, van Hoek ML. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011;11:114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276:5707–13.

    Article  CAS  PubMed  Google Scholar 

  53. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:10.

    Article  Google Scholar 

  54. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262–9.

    Article  CAS  PubMed  Google Scholar 

  55. Howell MD, Novak N, Bieber T, Pastore S, Girolomoni G, Boguniewicz M, et al. Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol. 2005;125:738–45.

    Article  CAS  PubMed  Google Scholar 

  56. McFadden JP, Noble WC, Camp RD. Superantigenic exotoxin-secreting potential of staphylococci isolated from atopic eczematous skin. Br J Dermatol. 1993;128:631–2.

    Article  CAS  PubMed  Google Scholar 

  57. Zollner TM, Wichelhaus TA, Hartung A, Von Mallinckrodt C, Wagner TO, Brade V, et al. Colonization with superantigen-producing Staphylococcus aureus is associated with increased severity of atopic dermatitis. Clin Exp Allergy. 2000;30:7.

    Article  Google Scholar 

  58. Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol. 1991;29:426–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Bunikowski R, Mielke M, Skarabis H, Herz U, Bergmann RL, Wahn U, et al. Prevelance and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol. 1999;103:6.

    Article  Google Scholar 

  60. Bantel H, Sinha B, Domschke W, Peters G, Schulze-Osthoff K, Janicke RU. alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol. 2001;155:637–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Walev I, Martin E, Jonas D, Mohamadzadeh M, Muller-Klieser W, Kunz L, et al. Staphylococcal alpha-toxin kills human keratinocytes by permeabilizing the plasma membrane for monovalent ions. Infect Immun. 1993;61:8.

    Google Scholar 

  62. Brauweiler AM, Goleva E, Leung DY. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol. 2014;134:2114–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Hong SW, Choi EB, Min TK, Kim JH, Kim MH, Jeon SG, et al. An important role of alpha-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus. PLoS One. 2014;9, e100499.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ezepchuk YV, Leung DY, Middleton MH, Bina P, Reiser R, Norris DA. Staphylococcal toxins and protein A differentially induce cytotoxicity and release of tumor necrosis factor-alpha from human keratinocytes. J Invest Dermatol. 1996;107:603–9.

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Hanakawa Y, Selwood T, Woo D, Lin C, Schechter NM, Stanley JR. Calcium-dependent conformation of desmoglein 1 is required for its cleavage by exfoliative toxin. J Invest Dermatol. 2003;121:383–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hirasawa Y, Takai T, Nakamura T, Mitsuishi K, Gunawan H, Suto H, et al. Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. J Invest Dermatol. 2010;130:614–7.

    Article  CAS  PubMed  Google Scholar 

  68. Ladhani S. Understanding the mechanism of action of the exfoliative toxins ofStaphylococcus aureus. FEMS Immunol Med Microbiol. 2003;39:181–9.

    Article  CAS  PubMed  Google Scholar 

  69. Syed AK, Reed TJ, Clark KL, Boles BR, Kahlenberg JM. Staphylococcus aureus phenol soluble modulins stimulate the release of pro-inflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infect Immun. 2015.

  70. Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol. 2003;133:8.

    Article  Google Scholar 

  71. Hirose A, Ikejima T, Gill DM. Established macrophagelike cell lines synthesize interleukin-1 in response to toxic shock syndrome toxin. Infect Immun. 1985;50:6.

    Google Scholar 

  72. Kim KH, Han JH, CHung JH, Cho KH, Eun HC. Role of staphylococcal superantigen in atopic dermatitis: influence on keratinocytes. J Korean Med Sci. 2006;21:9.

    Google Scholar 

  73. Bhardwaj N, Friedman SM, Cole BC, Nisanian AJ. Dendritic cells are potent antigen-presenting cells for microbial superantigens. J Exp Med. 1992;175:7.

    Article  Google Scholar 

  74. Komatsu N, Saijoh K, Kuk C, Liu AC, Khan S, Shirasaki F, et al. Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol. 2007;16:513–9.

    Article  CAS  PubMed  Google Scholar 

  75. Voegeli R, Rawlings AV, Breternitz M, Doppler S, Schreier T, Fluhr JW. Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol. 2009;161:70–7.

    Article  CAS  PubMed  Google Scholar 

  76. Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem. 2007;282:3640–52.

    Article  CAS  PubMed  Google Scholar 

  77. Sakabe J, Yamamoto M, Hirakawa S, Motoyama A, Ohta I, Tatsuno K, et al. Kallikrein-related peptidase 5 functions in proteolytic processing of profilaggrin in cultured human keratinocytes. J Biol Chem. 2013;288:17179–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Stefansson K, Brattsand M, Roosterman D, Kempkes C, Bocheva G, Steinhoff M, et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol. 2008;128:18–25.

    Article  CAS  PubMed  Google Scholar 

  79. Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J Off Publ Fed Am Soc Exp Biol. 2006;20:2068–80.

    CAS  Google Scholar 

  80. Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, Macleod DT, et al. Selective antimicrobial action is prodived by phenol-soluble modulins derived from staphylococcus epidermidis, a normal resident of the skin. J Investig Dermatol. 2010;130:9.

    Article  Google Scholar 

  81. Wanke I, Steffen H, Christ C, Krismer B, Gotz F, Peschel A, et al. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol. 2011;131:382–90.

    Article  CAS  PubMed  Google Scholar 

  82. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465:346–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphyloccus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42:756–66.

    Article  CAS  PubMed  Google Scholar 

  84. Ewing CI, Ashcroft C, Gibbs AC, Jones GA, Connor PJ, David TJ. Flucloxacillin in the treatment of atopic dermatitis. Br J Dermatol. 1998;138:1022–9.

    Article  CAS  PubMed  Google Scholar 

  85. Lever R, Hadley K, Downey D, Mackie R. Staphylococcal colonization in atopic dermatitis and the effect of topical mupirocin therapy. Br J Dermatol. 1988;119:189–98.

    Article  CAS  PubMed  Google Scholar 

  86. Parish LC, Jorizzo JL, Breton JJ, Hirman JW, Scangarella NE, Shawar RM, et al. Topical retapamulin ointment (1%, wt/wt) twice daily for 5 days versus oral cephalexin twice daily for 10 days in the treatment of secondarily infected dermatitis: results of a randomized controlled trial. J Am Acad Dermatol. 2006;55:1003–13.

    Article  PubMed  Google Scholar 

  87. Gilani SJ, Gonzalez M, Hussain I, Finlay AY, Patel GK. Staphylococcus aureus re-colonization in atopic dermatitis: beyond the skin. Clin Exp Dermatol. 2005;30:10–3.

    Article  CAS  PubMed  Google Scholar 

  88. Breuer K, Haussler S, Kapp A, Werfel T. Clinical and Laboratory Investigations Staphylococcus aureus: colonizing features and influence of an antibacterial treatment in adults with atopic dermatitis. Br J Dermatol. 2002;147:7.

    Article  Google Scholar 

  89. Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, VBoyle-Vavra S, et al. Community-acquired methicilin-resistant staphylococcus aureus in children with no identified presdisposing risk. JAMA. 1998;279:6.

    Article  Google Scholar 

  90. Barnes TM, Greive KA. Use of bleach baths for the treatment of infected atopic eczema. Aust J Dermatol. 2013;54:251–8.

    Article  Google Scholar 

  91. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123:e808–14.

    Article  PubMed  Google Scholar 

  92. Wong SM, Ng TG, Baba R. Efficacy and safety of sodium hypochlorite (bleach) baths in patients with moderate to severe atopic dermatitis in Malaysia. J Dermatol. 2013;40:874–80.

    Article  CAS  PubMed  Google Scholar 

  93. Leung TH, Zhang LF, Wang J, Ning S, Knox SJ, Kim SK. Topical hypochlorite ameliorates NF-kappaB-mediated skin diseases in mice. J Clin Invest. 2013;123:5361–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347:67–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Koller DY, Halmerbauer G, Bock A, Engstler G. Action of a silk fabric treated with AEGIS in children with atopic dermatitis: a 3-month trial. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2007;18:335–8.

    Article  CAS  Google Scholar 

  96. Stinco G, Piccirillo F, Valent F. A randomized double-blind study to investigate the clinical efficacy of adding a non-migrating antimicrobial to a special silk fabric in the treatment of atopic dermatitis. Dermatology. 2008;217:191–5.

    Article  CAS  PubMed  Google Scholar 

  97. Aroniadis OC, Brandt LJ. Intestinal microbiota and the efficacy of fecal microbiota transplantation in gastrointestinal disease. Gastroenterol Hepatol. 2014;10:230–7.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Gallo.

Additional information

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, M.R., Gallo, R.L. The Role of the Skin Microbiome in Atopic Dermatitis. Curr Allergy Asthma Rep 15, 65 (2015). https://doi.org/10.1007/s11882-015-0567-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0567-4

Keywords

Navigation