Skip to main content
Log in

“Feed a Cold, Starve a Fever?” A Review of Nutritional Strategies in the Setting of Bacterial Versus Viral Infections

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Some data, mostly originally derived from animal studies, suggest that low glucose intake is protective in bacterial sepsis but detrimental in overwhelming viral infections. This has been interpreted into a broad belief that different forms of sepsis may potentially require different nutritional management strategies. There are a few mechanistic differences between the host interactions with virus and bacteria which can explain why there may be opposing responses to macronutrient and micronutrient during the infected state. Here, we aim to review relevant evidence on the mechanisms and pathophysiology of nutritional management strategies in various infectious syndromes and summarize their clinical implications.

Recent Findings

Newer literature — in the context of the SARS-CoV-19 pandemic — offers some insight to viral infections. There is still limited clinically applicable data during infection that clearly delineate the role of nutrition during an active viral vs bacterial infections.

Summary

Based on contrasting findings in different models of viruses and bacteria, the macronutrient and micronutrient needs may depend more on specific infectious organisms that may not be generalizable as bacterial versus viral. Overall, the metabolic effects of sepsis are context dependent, and various host-specific (e.g., age, baseline nutritional status, immune status, comorbidities) and illness variables (phase, duration, and severity of illness) play a significant role in determining the outcome besides pathogen-specific (virus or bacterial or fungi and combined infections) factors. Microbe therapy (probiotics and prebiotics) seems to have therapeutic potential in both viral and bacterial infected states, and this seems like a promising area for further practical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prewitt EM. Fever: facts, fiction, physiology. Crit Care Nurs. 2005;25(1):S8–S.

    Google Scholar 

  2. Bazar KA, Yun AJ, Lee PY. “Starve a fever and feed a cold”: feeding and anorexia may be adaptive behavioral modulators of autonomic and T helper balance. Med Hypotheses. 2005;64(6):1080–4.

    Article  PubMed  Google Scholar 

  3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yadav H, Cartin-Ceba R, editors. Balance between hyperinflammation and immunosuppression in sepsis. Semin Respir Crit Care Med. 2016;37(01):042–50.

    Article  Google Scholar 

  5. Téblick A, Gunst J, Langouche L, Van den Berghe G. Novel insights in endocrine and metabolic pathways in sepsis and gaps for future research. Clin Sci. 2022;136(11):861–78.

    Article  Google Scholar 

  6. Cha J-K, Kim H-S, Kim E-J, Lee E-S, Lee J-H, Song I-A. Effect of early nutritional support on clinical outcomes of critically ill patients with sepsis and septic shock: a single-center retrospective study. Nutrients. 2022;14(11):2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee-anne SC, Tatucu-Babet OA, Lambell KJ, Fetterplace K, Ridley EJ. Nutrition guidelines for critically ill adults admitted with COVID-19: Is there consensus? Clinical Nutrition ESPEN. 2021;44:69–77.

    Article  Google Scholar 

  8. Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39(6):1631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Detopoulou P, Tsouma C, Papamikos V. COVID-19 and nutrition: summary of official recommendations. Top Clin Nutr. 2022;37(3):187.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martindale R, Patel JJ, Taylor B, Arabi YM, Warren M, McClave SA. Nutrition therapy in critically ill patients with coronavirus disease 2019. J Parenter Enter Nutr. 2020;44(7):1174–84.

    Article  CAS  Google Scholar 

  11. Ojo O, Ojo OO, Feng Q, Boateng J, Wang X, Brooke J, et al. The effects of enteral nutrition in critically ill patients with COVID-19: a systematic review and meta-analysis. Nutrients. 2022;14(5):1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin. 2009;29(2):247–64.

    Article  Google Scholar 

  13. Murray M, Murray A. Anorexia of infection as a mechanism of host defense. Am J Clin Nutr. 1979;32(3):593–6.

    Article  CAS  PubMed  Google Scholar 

  14. Wing EJ, Young JB. Acute starvation protects mice against Listeria monocytogenes. Infect Immun. 1980;28(3):771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Exton MS. Infection-induced anorexia: active host defence strategy. Appetite. 1997;29(3):369–83.

    Article  CAS  PubMed  Google Scholar 

  16. Plata-Salamán CR. Anorexia during acute and chronic disease. Nutrition. 1996;12(2):69–78.

    Article  PubMed  Google Scholar 

  17. Van Niekerk G, Meaker C, Engelbrecht A-M. Nutritional support in sepsis: when less may be more. Crit Care. 2020;24:1–6.

    Google Scholar 

  18. Hite JL, Pfenning AC, Cressler CE. Starving the enemy? Feeding behavior shapes host-parasite interactions. Trends Ecol Evol. 2020;35(1):68–80.

    Article  PubMed  Google Scholar 

  19. van den Brink GR, van den Boogaardt DE, van Deventer SJ, Peppelenbosch MP. Feed a cold, starve a fever? Clin Vaccine Immunol. 2002;9(1):182–3.

    Article  Google Scholar 

  20. Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot J-D, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell. 2016;166(6):1512-25. e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McClave SA, Lowen CC, Martindale RG. The 2016 ESPEN Arvid Wretlind lecture: the gut in stress. Clin Nutr. 2018;37(1):19–36.

    Article  PubMed  Google Scholar 

  22. McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009;24(3):305–15.

    Article  PubMed  Google Scholar 

  23. Marik PE. Nutritional support among medical inpatients—feed the cold (and malnourished) and starve the febrile. JAMA Netw Open. 2019;2(11):e1915707-e.

    Article  Google Scholar 

  24. Casaer MP, Hermans G, Wilmer A, Van den Berghe G. Impact of early parenteral nutrition completing enteral nutrition in adult critically ill patients (EPaNIC trial): a study protocol and statistical analysis plan for a randomized controlled trial. Trials. 2011;12:1–11.

    Article  Google Scholar 

  25. Fivez T, Kerklaan D, Verbruggen S, Vanhorebeek I, Verstraete S, Tibboel D, et al. Impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients (PEPaNIC trial): study protocol for a randomized controlled trial. Trials. 2015;16(1):1–9.

    Article  CAS  Google Scholar 

  26. Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371(18):1673–84.

    Article  PubMed  Google Scholar 

  27. Reignier J, Boisramé-Helms J, Brisard L, Lascarrou J-B, Hssain AA, Anguel N, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391(10116):133–43.

    Article  PubMed  Google Scholar 

  28. Chauhan P, Saha B. Metabolic regulation of infection and inflammation. Cytokine. 2018;112:1–11.

    Article  CAS  PubMed  Google Scholar 

  29. Troha K, Ayres JS. Metabolic adaptations to infections at the organismal level. Trends Immunol. 2020;41(2):113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palmer CS. Innate metabolic responses against viral infections. Nat Metab. 2022;4(10):1245–59.

    Article  PubMed  Google Scholar 

  31. Wasyluk W, Zwolak A. Metabolic alterations in sepsis. J Clin Med. 2021;10(11):2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verhoeven JJ, den Brinker M, Hokken-Koelega A, Hazelzet JA, Joosten KF. Pathophysiological aspects of hyperglycemia in children with meningococcal sepsis and septic shock: a prospective, observational cohort study. Crit Care. 2011;15(1):1–10.

    Article  Google Scholar 

  33. Szentirmai É, Massie AR, Kapás L. Lipoteichoic acid, a cell wall component of Gram-positive bacteria, induces sleep and fever and suppresses feeding. Brain Behav Immun. 2021;92:184–92.

    Article  CAS  PubMed  Google Scholar 

  34. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:2379.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Siqueira MDS, Ribeiro RDM, Travassos LH. Autophagy and its interaction with intracellular bacterial pathogens. Front Immunol. 2018;9:935.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hussey S, Travassos LH, Jones NL, editors. Autophagy as an emerging dimension to adaptive and innate immunity. Semin Immunol. 2009;21(4):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.

    Article  CAS  PubMed  Google Scholar 

  38. Rikihisa Y. Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat Rec. 1984;208(3):319–27.

    Article  CAS  PubMed  Google Scholar 

  39. Mao J, Lin E, He L, Yu J, Tan P, Zhou Y. Autophagy and Viral Infection. In: Cui J, editor. Autophagy Regulation of Innate Immunity. Advances in Experimental Medicine and Biology, vol. 1209. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-15-0606-2_5.

    Chapter  Google Scholar 

  40. Heaton NS, Perera R, Berger KL, Khadka S, LaCount DJ, Kuhn RJ, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci. 2010;107(40):17345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U. Metabolic effects of influenza virus infection in cultured animal cells: intra-and extracellular metabolite profiling. BMC Syst Biol. 2010;4(1):1–22.

    Article  Google Scholar 

  42. Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022;30(7):679–92.

    Article  CAS  PubMed  Google Scholar 

  43. Pahlavani MA. Caloric restriction and immunosenescence: a current perspective. Front Biosci-Landmark. 2000;5(3):580–7.

    Article  Google Scholar 

  44. Kristan DM. Calorie restriction and susceptibility to intact pathogens. Age. 2008;30:147–56.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ritz M-F, Ratajczak P, Curin Y, Cam E, Mendelowitsch A, Pinet F, et al. Chronic treatment with red wine polyphenol compounds mediates neuroprotection in a rat model of ischemic cerebral stroke. J Nutr. 2008;138(3):519–25.

    Article  CAS  PubMed  Google Scholar 

  46. Clinthorne JF, Adams DJ, Fenton JI, Ritz BW, Gardner EM. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection. J Nutr. 2010;140(8):1495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ritz BW, Aktan I, Nogusa S, Gardner EM. Energy restriction impairs natural killer cell function and increases the severity of influenza infection in young adult male C57BL/6 mice. J Nutr. 2008;138(11):2269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gardner EM. Caloric restriction decreases survival of aged mice in response to primary influenza infection. J Gerontol A Biol Sci Med Sci. 2005;60(6):688–94.

    Article  PubMed  Google Scholar 

  49. Sun D, Muthukumar AR, Lawrence RA, Fernandes G. Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin Diagn Lab Immunol. 2001;8(5):1003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong W, Selgrade MK, Ian Gilmour M, Lange RW, Park P, Luster MI, et al. Altered alveolar macrophage function in calorie-restricted rats. Am J Respir Cell Mol Biol. 1998;19(3):462–9.

    Article  CAS  PubMed  Google Scholar 

  51. Peck MD, Babcock GF, Alexander JW. The role of protein and calorie restriction in outcome from Salmonella infection in mice. J Parenter Enter Nutr. 1992;16(6):561–5.

    Article  CAS  Google Scholar 

  52. Reyes L, Arvelo W, Estevez A, Gray J, Moir JC, Gordillo B, et al. Population-based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza Other Respir Viruses. 2010;4(3):129–40.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Short KR, Kedzierska K, Van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. Front Cell Infect Microbiol. 2018;8:343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Riesgo H, Castro A, Del Amo S, San Ceferino MJ, Izaola O, Primo D, et al. Prevalence of risk of malnutrition and risk of sarcopenia in a reference hospital for COVID-19: relationship with mortality. Ann Nutr Metab. 2021;77(6):324–9.

    Article  CAS  PubMed  Google Scholar 

  55. Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184(6):3127–33.

    Article  CAS  PubMed  Google Scholar 

  56. Smith AG, Sheridan PA, Harp JB, Beck MA. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr. 2007;137(5):1236–43.

    Article  CAS  PubMed  Google Scholar 

  57. Hsu A, Aronoff D, Phipps J, Goel D, Mancuso P. Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Clin Exp Immunol. 2007;150(2):332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Papathanassoglou E, El-Haschimi K, Li XC, Matarese G, Strom T, Mantzoros C. Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol. 2006;176(12):7745–52.

    Article  CAS  PubMed  Google Scholar 

  59. Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG, Hueston CM, et al. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome. 2019;7:1–12.

    Article  Google Scholar 

  60. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211.

    Article  CAS  PubMed  Google Scholar 

  61. Preiser J-C, Arabi YM, Berger MM, Casaer M, McClave S, Montejo-González JC, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice. Crit Care. 2021;25(1):1–13.

    Article  Google Scholar 

  62. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.

    Article  PubMed  Google Scholar 

  63. Marik PE, Hooper MH. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: a systematic review and meta-analysis. Intensive Care Med. 2016;42:316–23.

    Article  PubMed  Google Scholar 

  64. TARGET Investigators, for the ANZICS Clinical Trials Group, Chapman M, Peake SL, Bellomo R, Davies A, Deane A, Horowitz M, et al. Energy-dense versus routine enteral nutrition in the critically ill. N Engl J Med. 2018;379(19):1823–34.

    Article  Google Scholar 

  65. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):e1063–143.

    Article  PubMed  Google Scholar 

  66. Sun J-K, Nie S, Chen Y-M, Zhou J, Wang X, Zhou S-M, et al. Effects of permissive hypocaloric vs standard enteral feeding on gastrointestinal function and outcomes in sepsis. World J Gastroenterol. 2021;27(29):4900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Betue CT, van Waardenburg DA, Deutz NE, van Eijk HM, van Goudoever JB, Luiking YC, et al. Increased protein-energy intake promotes anabolism in critically ill infants with viral bronchiolitis: a double-blind randomised controlled trial. Arch Dis Child. 2011;96(9):817–22.

    Article  PubMed  Google Scholar 

  68. Ayres JS, Schneider DS. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 2009;7(7): e1000150.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rao S, Schieber AMP, O’Connor CP, Leblanc M, Michel D, Ayres JS. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell. 2017;168(3):503-16. e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Agwunobi AO, Reid C, Maycock P, Little RA, Carlson GL. Insulin resistance and substrate utilization in human endotoxemia. J Clin Endocrinol Metab. 2000;85(10):3770–8.

    Article  CAS  PubMed  Google Scholar 

  71. O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017;215(9):1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lubbers T, De Haan J-J, Hadfoune MH, Zhang Y, Luyer MD, Grundy D, et al. Lipid-enriched enteral nutrition controls the inflammatory response in murine Gram-negative sepsis. Crit Care Med. 2010;38(10):1996–2002.

    Article  CAS  PubMed  Google Scholar 

  74. Svahn SL, Ulleryd MA, Grahnemo L, Ståhlman M, Borén J, Nilsson S, et al. Dietary omega-3 fatty acids increase survival and decrease bacterial load in mice subjected to Staphylococcus aureus-induced sepsis. Infect Immun. 2016;84(4):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Husson M-O, Ley D, Portal C, Gottrand M, Hueso T, Desseyn J-L, et al. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids. J Infect. 2016;73(6):523–35.

    Article  PubMed  Google Scholar 

  76. Sungurtekin H, Değirmenci S, Sungurtekin U, Oguz BE, Sabir N, Kaptanoglu B. Comparison of the effects of different intravenous fat emulsions in patients with systemic inflammatory response syndrome and sepsis. Nutr Clin Pract. 2011;26(6):665–71.

    Article  PubMed  Google Scholar 

  77. Djoko KY, Cheryl-lynn YO, Walker MJ, McEwan AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem. 2015;290(31):18954–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J, et al. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull. 2021;66(17):1806–16.

    Article  CAS  Google Scholar 

  79. Yang F, Yang Y, Zeng L, Chen Y, Zeng G. Nutrition metabolism and infections. Infect Microbes Dis. 2021;3(3):134–41.

    Article  CAS  Google Scholar 

  80. Donabedian H. Nutritional therapy and infectious diseases: a two-edged sword. Nutr J. 2006;5(1):1–10.

    Article  Google Scholar 

  81. Hsu R, Magee J, Jodorkovsky D. Accessed January 20, 2023. Fecal microbiota transplantation (FMT), bacteriotherapy 2022. Available from: https://gi.org/topics/fecal-microbiota-transplantation-fmt-bacteriotherapy.

  82. Ceccarelli G, Borrazzo C, Pinacchio C, Santinelli L, Innocenti GP, Cavallari EN, et al. Oral bacteriotherapy in patients with COVID-19: a retrospective cohort study. Front Nutr. 2021;7: 613928.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tulic M, Piche T, Verhasselt V. Lung–gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy. 2016;46(4):519–28.

    Article  CAS  PubMed  Google Scholar 

  84. Santinelli L, Laghi L, Innocenti GP, Pinacchio C, Vassalini P, Celani L, et al. Oral bacteriotherapy reduces the occurrence of chronic fatigue in COVID-19 patients. Front Nutr. 2022;8:1139.

    Article  Google Scholar 

  85. Xu L, Yang CS, Liu Y, Zhang X. Effective regulation of gut microbiota with probiotics and prebiotics may prevent or alleviate COVID-19 through the gut-lung axis. Front Pharmacol. 2022;13:895193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. d’Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, et al. Challenges in the management of SARS-CoV2 infection: the role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med. 2020;7:389.

    Article  Google Scholar 

  87. Bozkurt HS, Bilen Ö. Oral booster probiotic bifidobacteria in SARS-COV-2 patients. Int J Immunopathol Pharmacol. 2021;35:20587384211059676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hajipour A, Afsharfar M, Jonoush M, Ahmadzadeh M, Gholamalizadeh M, Hassanpour Ardekanizadeh N, et al. The effects of dietary fiber on common complications in critically ill patients; with a special focus on viral infections; a systematic reveiw. Immun Inflamm Dis. 2022;10(5): e613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Coconnier M-H, Lievin V, Hemery E, Servin AL. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol. 1998;64(11):4573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Homan M. Are probiotics useful in Helicobacter pylori eradication? World J Gastroenterol: WJG. 2015;21(37):10644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Asgari B, Kermanian F, Yaghoobi MH, Vaezi A, Soleimanifar F, Yaslianifard S. The anti-Helicobacter pylori effects of Lactobacillus acidophilus, L. plantarum, and L. rhamnosus in stomach tissue of C57BL/6 Mice. Visceral Med. 2020;36(2):137–43.

    Article  Google Scholar 

  92. Goldenberg JZ, Yap C, Lytvyn L, Lo CKF, Beardsley J, Mertz D, et al. Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017(12):CD006095. https://doi.org/10.1002/14651858.CD006095.pub4. Accessed 03 Apr 2024.

  93. Carstensen JW, Chehri M, Schønning K, Rasmussen SC, Anhøj J, Godtfredsen NS, et al. Use of prophylactic Saccharomyces boulardii to prevent Clostridium difficile infection in hospitalized patients: a controlled prospective intervention study. Eur J Clin Microbiol Infect Dis. 2018;37:1431–9.

    Article  PubMed  Google Scholar 

  94. Mazkour S, Shekarforoush SS, Basiri S, Nazifi S, Yektaseresht A, Honarmand M. Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella Typhimurium infected rats. Sci Rep. 2020;10(1):8035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Palchaudhuri.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankararaman, S., Venegas, C., Seth, S. et al. “Feed a Cold, Starve a Fever?” A Review of Nutritional Strategies in the Setting of Bacterial Versus Viral Infections. Curr Nutr Rep (2024). https://doi.org/10.1007/s13668-024-00536-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13668-024-00536-w

Keywords

Navigation