Skip to main content
Log in

Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations.

Recent Findings

Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action.

Summary

This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

ATF2:

Activating transcription factor 2

AMPK/PI3K/Akt/GSK3β:

AMP-activated protein kinase/phosphatidylinositol 3-kinase/serine/threonine protein kinase b/glycogen synthase kinase-3 beta

CAT:

Catalase

DM:

Diabetes mellitus

CRP:

C-reactive protein

FGF2:

Fibroblast growth factor 2

FOXO1:

Forkhead box protein O1

GSK-3β:

Glycogen synthase kinase 3 beta

GPx:

Glutathione peroxidase

GLP-1:

Glucagon-like peptide 1

GLUT4:

Glucose transporter type 4

GSH:

Glutathione

H2O2:

Hydrogen peroxide

IL-6:

Interleukin 6

IRS1:

Insulin receptor substrate 1

ICAM1:

Intercellular adhesion molecule 1

JNK:

Jun N-terminal kinase

MCP-1:

Monocyte chemoattractant protein-1

mRNA:

Messenger RNA

Muc2:

Mucin 2

mTOR:

Mammalian target of rapamycin

NO:

Nitrous oxide

NF-κB:

Nuclear factor kappa B

NRK 52E:

Rat renal proximal tubular epithelial cells

PPARG:

Peroxisome proliferator-activated receptor gamma

PDX1:

Pancreatic and duodenal homeobox 1

p38MAPK:

P38 Mitogen-activated protein kinases

ROS:

Reactive oxygen species

Rab27a/Slp4:

Ras-related protein/synaptotagmin-like protein 4

SOD:

Superoxide dismutase

SIRT1:

Sirtuin 1

SLC2A4:

Solute carrier family 2 member 4

TNFα:

Tumor necrosis factor-alpha

TGF-β1:

Transforming growth factor beta 1

TFF3:

Trefoil factor family 3

T2DM:

Type 2 diabetes mellitus

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34. https://doi.org/10.1016/S0140-6736(23)01301-6The study systematically analyzes the global diabetes burden from 1990 to 2021 and projects an increasing prevalence up to 2050, emphasizing the urgent need for comprehensive public health strategies.

  2. • Saeedi P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. The study explores the multifaceted health benefits of Quercetin, highlighting its therapeutic potential across various medical conditions due to its antioxidant and anti-inflammatory properties.

    Article  PubMed  Google Scholar 

  3. Sasako T, Yamauchi T, Ueki K. Intensified multifactorial intervention in patients with type 2 diabetes mellitus. Diabetes Metab J. 2023;47(2):185–97.

    Article  PubMed  PubMed Central  Google Scholar 

  4. ElSayed NA, et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S19–40.

    Article  CAS  PubMed  Google Scholar 

  5. Dludla PV, et al. Pancreatic β-cell dysfunction in type 2 diabetes: implications of inflammation and oxidative stress. World J Diabetes. 2023;14(3):130–46.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne). 2021;12:706978.

    Article  PubMed  Google Scholar 

  7. Mutalub YB, et al. Gut microbiota modulation as a novel therapeutic strategy in cardiometabolic diseases. Foods. 2022;11(17):2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou K, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  9. Álvarez J, et al. Gut microbes and health. Gastroenterología y Hepatología (English Edition). 2021;44(7):519–35.

    Article  Google Scholar 

  10. Bajinka O, et al. The gut microbiota pathway mechanisms of diabetes. AMB Express. 2023;13(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ayakdaş G, Ağagündüz D. Microbiota-accessible carbohydrates (MACs) as novel gut microbiome modulators in noncommunicable diseases. Heliyon. 2023;9(9):e19888.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mazhar M, Zhu Y, Qin L. The interplay of dietary fibers and intestinal microbiota affects type 2 diabetes by generating short-chain fatty acids. Foods. 2023;12(5):1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu J, Yang K, Fan H, Wei M, Xiong Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2023;14:1114424. https://doi.org/10.3389/fendo.2023.1114424.

  14. Fakharian F, Thirugnanam S, Welsh DA, et al. The role of gut dysbiosis in the loss of intestinal immune cell functions and viral pathogenesis. Microorganisms. 2023;11(7):1849. https://doi.org/10.3390/microorganisms11071849.

  15. Kang GG, et al. Diet-induced gut dysbiosis and inflammation: key drivers of obesity-driven NASH. iScience. 2023;26(1):105905.

    Article  ADS  PubMed  Google Scholar 

  16. Basak S, et al. Dietary fats and the gut microbiota: their impacts on lipid-induced metabolic syndrome. J Funct Foods. 2022;91:105026.

    Article  CAS  Google Scholar 

  17. Jia L, et al. Pharmacomicrobiomics and type 2 diabetes mellitus: a novel perspective towards possible treatment. Front Endocrinol (Lausanne). 2023;14:1149256.

    Article  PubMed  Google Scholar 

  18. Tang X, et al. Angelica polysaccharides relieve blood glucose levels in diabetic KKAy mice possibly by modulating gut microbiota: an integrated gut microbiota and metabolism analysis. BMC Microbiol. 2023;23(1):281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li R, et al. Bi-directional interactions between glucose-lowering medications and gut microbiome in patients with type 2 diabetes mellitus: a systematic review. Genes. 2023;14(8):1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sorrenti V, Burò I, Consoli V, Vanella L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: biochemical aspects. Int J Mol Sci. 2023;24(3):2019. https://doi.org/10.3390/ijms24032019.

  21. • Patel BK, Patel KH, Moochhala SM. Gut microbiota intervention strategies using active components from medicinal herbs to evaluate clinical efficacy of type 2 diabetes – a review. Clin Transl Discov. 2023;3(1):e170. The study delves into the potential of activecompounds from medicinal herbs in modulating gut microbiota for Type 2 Diabetestreatment, underscoring the clinical significance of herbal interventions.

    Article  Google Scholar 

  22. Yang F, Gao R, Luo X, Liu R, Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Front Nutr. 2023;10:1187718. https://doi.org/10.3389/fnut.2023.1187718.

  23. Cheng H, et al. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal. 2022;12(4):541–55.

    Article  PubMed  Google Scholar 

  24. World Flora Online. https://www.worldfloraonline.org.

  25. Puljiz Z, Kumric M, Vrdoljak J, et al. Obesity, gut microbiota, and metabolome: from pathophysiology to nutritional interventions. Nutrients. 2023;15(10):2236. https://doi.org/10.3390/nu15102236.

  26. Duncan SH, et al. Links between diet, intestinal anaerobes, microbial metabolites and health. Biomedicines. 2023;11(5):1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puljiz Z, Kumric M, Vrdoljak J, Martinovic D, Ticinovic Kurir T, Krnic MO, Urlic H, Puljiz Z, Zucko J, Dumanic P, Mikolasevic I, Bozic J. Obesity, gut microbiota, and metabolome: from pathophysiology to nutritional interventions. Nutrients. 2023;15(10):2236. https://doi.org/10.3390/nu15102236.

  28. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–91.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang D, et al. Short-chain fatty acids in diseases. Cell Commun Signal. 2023;21(1):212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JG, et al. Impact of short-chain fatty acid supplementation on gut inflammation and microbiota composition in a murine colitis model. J Nutr Biochem. 2022;101:108926.

    Article  CAS  PubMed  Google Scholar 

  31. Blaak EE, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11(5):411–55.

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chandalia M, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342(19):1392–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pingitore A, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Relationship between dietary polyphenols and gut microbiota: New clues to improve cognitive disorders, mood disorders and circadian rhythms. Foods. 2023;12(6):1309. https://doi.org/10.3390/foods12061309.

  36. Bié J, et al. Polyphenols in health and disease: gut microbiota, bioaccessibility, and bioavailability. Compounds. 2023;3(1):40–72.

    Article  Google Scholar 

  37. Zhang Q, Hu N. Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2020;13:5003–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu L, et al. Gut microbiota: a new target for T2DM prevention and treatment. Front Endocrinol (Lausanne). 2022;13:958218.

    Article  PubMed  Google Scholar 

  39. Zhou Z, Sun B, Yu D, Zhu C. Gut microbiota: an important player in type 2 diabetes mellitus. Front Cell Infect Microbiol. 2022;12:834485. https://doi.org/10.3389/fcimb.2022.834485.

  40. Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation. 2018;9(1):5–12.

    Article  PubMed  Google Scholar 

  41. Freepik. https://www.freepik.com.

  42. Jafari M, Juanson Arabit JG, Courville R, et al. The impact of Rhodiola rosea on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse model. Sci Rep. 2022;12(1):10581. https://doi.org/10.1038/s41598-022-14241-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qi SS, et al. Salidroside from Rhodiola rosea L. attenuates diabetic nephropathy in STZ induced diabetic rats via anti-oxidative stress, anti-inflammation, and inhibiting TGF-β1/Smad pathway. J Funct Foods. 2021;77:104329.

    Article  CAS  Google Scholar 

  44. Lee BH, Lee CC, Wu SC. Ice plant (Mesembryanthemum crystallinum) improves hyperglycaemia and memory impairments in a Wistar rat model of streptozotocin-induced diabetes. J Sci Food Agric. 2014;94(11):2266–73.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang C, et al. Extract of ice plant (Mesembryanthemum crystallinum) ameliorates hyperglycemia and modulates the gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. Food Funct. 2019;10(6):3252–61.

    Article  CAS  PubMed  Google Scholar 

  46. Gao Y, et al. Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J Agric Food Chem. 2015;63(26):6019–26.

    Article  CAS  PubMed  Google Scholar 

  47. Pagliari S, Forcella M, Lonati E, et al. Antioxidant and anti-inflammatory effect of cinnamon (Cinnamomum verum J. Presl) bark extract after in vitro digestion simulation. Foods. 2023;12(3):452. https://doi.org/10.3390/foods12030452.

  48. Jiang H, Cai M, Shen B, Wang Q, Zhang T, Zhou X. Synbiotics and gut microbiota: New perspectives in the treatment of type 2 diabetes mellitus. Foods. 2022;11(16):2438. https://doi.org/10.3390/foods11162438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silva ML, Bernardo MA, Singh J, de Mesquita MF. Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: A review. Nutrients. 2022;14(13):2773. https://doi.org/10.3390/nu14132773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ping H, Zhang G, Ren G. Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice. Food Chem Toxicol. 2010;48(8–9):2344–9.

    Article  CAS  PubMed  Google Scholar 

  51. Van Hul M, et al. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am J Physiol Endocrinol Metab. 2018;314(4):E334-e352.

    Article  PubMed  Google Scholar 

  52. Gil-Sánchez I, et al. Supplementation with grape pomace in healthy women: changes in biochemical parameters, gut microbiota and related metabolic biomarkers. J Funct Foods. 2018;45:34–46.

    Article  Google Scholar 

  53. Wang Y, et al. EVOO supplement prevents type 1 diabetes by modulating gut microbiota and serum metabolites in NOD mice. Life Sci. 2023;335:122274.

    Article  CAS  PubMed  Google Scholar 

  54. Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The role of nutritional factors in the modulation of the composition of the gut microbiota in people with autoimmune diabetes. Nutrients. 2022;14(12):2498. https://doi.org/10.3390/nu14122498.

  55. Farràs M, et al. Modulation of the gut microbiota by olive oil phenolic compounds: implications for lipid metabolism, immune system, and obesity. Nutrients. 2020;12(8)

  56. Martín-Peláez S, et al. Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota. Eur J Nutr. 2017;56(1):119–31.

    Article  PubMed  Google Scholar 

  57. Martín-Peláez S, et al. Influence of phenol-enriched olive oils on human intestinal immune function. Nutrients. 2016;8(4):213.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Almatroodi SA, Alnuqaydan AM, Babiker AY, Almogbel MA, Khan AA, Husain RA. 6-gingerol, a bioactive compound of ginger attenuates renal damage in streptozotocin-induced diabetic rats by regulating the oxidative stress and inflammation. Pharmaceutics. 2021;13(3):317. https://doi.org/10.3390/pharmaceutics13030317.

  59. Samad MB, et al. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr(db/db) type 2 diabetic mice. BMC Complement Altern Med. 2017;17(1):395.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen X, Pan S, Li F, Xu X, Xing H. Plant-derived bioactive compounds and potential health benefits: involvement of the gut microbiota and its metabolic activity. Biomolecules. 2022;12(12):1871. https://doi.org/10.3390/biom12121871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen Z, Luo J, Jia M, Chai Y, Bao Y. Polygonatum sibiricum saponin Exerts Beneficial hypoglycemic effects in type 2 diabetes mice by improving hepatic insulin resistance and glycogen synthesis-related proteins. Nutrients. 2022;14(24):5222. https://doi.org/10.3390/nu14245222.

  62. Xu J, Zhang J, Sang Y, et al. Polysaccharides from medicine and food homology materials: a review on their extraction, purification, structure, and biological activities. Molecules. 2022;27(10):3215. https://doi.org/10.3390/molecules27103215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chai Y, Luo J, Bao Y. Effects of Polygonatum sibiricum saponin on hyperglycemia, gut microbiota composition and metabolic profiles in type 2 diabetes mice. Biomed Pharmacother. 2021;143:112155.

    Article  CAS  PubMed  Google Scholar 

  64. Ojo OA, et al. Gongronema latifolium Benth. leaf extract attenuates diabetes-induced neuropathy via inhibition of cognitive, oxidative stress and inflammatory response. J Sci Food Agric. 2020;100(12):4504–11.

    Article  CAS  PubMed  Google Scholar 

  65. Chen X, et al. Hypoglycemic mechanisms of Polygonatum sibiricum polysaccharide in db/db mice via regulation of glycolysis/gluconeogenesis pathway and alteration of gut microbiota. Heliyon. 2023;9(4):e15484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chukwudozie IK, Agbo MC, Ugwu KO, Ezeonu IM. Oral administration of Gongronema latifolium leaf extract modulates gut microflora and blood glucose of induced diabetic rats. J Pure Appl Microbiol. 2021;15(1):346–55.

    Article  CAS  Google Scholar 

  67. Chukwudozie IK, et al. Oral Administration of Gongronema latifolium leaf extract modulates gut microflora and blood glucose of induced diabetic rats. J Pure Appl Microbiol. 2021;15:346+.

    Article  CAS  Google Scholar 

  68. Shen X, et al. Polyphenol extracts from germinated mung beans can improve type 2 diabetes in mice by regulating intestinal microflora and inhibiting inflammation. Front Nutr. 2022;9:846409.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li L, Tian Y, Zhang S, et al. Regulatory effect of mung bean peptide on prediabetic mice induced by high-fat diet. Front Nutr. 2022;9:913016. https://doi.org/10.3389/fnut.2022.913016.

  70. Hou D, et al. A comparison between whole mung bean and decorticated mung bean: beneficial effects on the regulation of serum glucose and lipid disorders and the gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Food Funct. 2020;11(6):5525–37.

    Article  CAS  PubMed  Google Scholar 

  71. Charoensiddhi S, Chanput WP, Sae-Tan S. Gut microbiota modulation, anti-diabetic and anti-inflammatory properties of polyphenol extract from mung bean seed coat (Vigna radiata L.). Nutrients. 2022;14(11):2275. https://doi.org/10.3390/nu14112275.

  72. Su H, et al. Pelargonidin-3-O-glucoside derived from wild raspberry exerts antihyperglycemic effect by inducing autophagy and modulating gut microbiota. J Agric Food Chem. 2020;68(46):13025–37.

    Article  CAS  PubMed  Google Scholar 

  73. Xing T, et al. Raspberry supplementation improves insulin signaling and promotes brown-like adipocyte development in white adipose tissue of obese mice. Mol Nutr Food Res. 2018;62(5):1701035.

    Article  Google Scholar 

  74. Tu L, et al. Red raspberry extract (Rubus idaeus L shrub) intake ameliorates hyperlipidemia in HFD-induced mice through PPAR signaling pathway. Food Chem Toxicol. 2019;133:110796.

    Article  CAS  PubMed  Google Scholar 

  75. Noratto GD, Chew BP, Atienza LM. Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem. 2017;227:305–14.

    Article  CAS  PubMed  Google Scholar 

  76. Su H, et al. Pelargonidin-3-O-glucoside derived from wild raspberry exerts antihyperglycemic effect by inducing autophagy and modulating gut microbiota. J Agric Food Chem. 2019;68(46):13025–37.

    Article  PubMed  Google Scholar 

  77. Chen X, Chen C, Fu X. Hypoglycemic effect of the polysaccharides from Astragalus membranaceus on type 2 diabetic mice based on the “gut microbiota–mucosal barrier.” Food Funct. 2022;13(19):10121–33.

    Article  CAS  PubMed  Google Scholar 

  78. Gong P, et al. Hypoglycemic effect of astragaloside IV via modulating gut microbiota and regulating AMPK/SIRT1 and PI3K/AKT pathway. J Ethnopharmacol. 2021;281:114558.

    Article  CAS  PubMed  Google Scholar 

  79. Wen D, et al. Astragalus mongholicus Bunge and Panax notoginseng (Burkill) FH chen formula for renal injury in diabetic nephropathy—in vivo and in vitro evidence for autophagy regulation. Front Pharmacol. 2020;11:732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gagliardi A, Totino V, Cacciotti F, et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health. 2018;15(8):1679. https://doi.org/10.3390/ijerph15081679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shehadeh MB, Suaifan GARY, Abu-Odeh AM. Plants secondary metabolites as blood glucose-lowering molecules. Molecules. 2021;26(14):4333. https://doi.org/10.3390/molecules26144333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deka H, Choudhury A, Dey BK. An overview on plant derived phenolic compounds and their role in treatment and management of diabetes. J Pharmacopuncture. 2022;25(3):199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pérez-Burillo S, Navajas-Porras B, López-Maldonado A, Hinojosa-Nogueira D, Pastoriza S, Rufián-Henares JÁ. Green tea and its relation to human gut microbiome. Molecules. 2021;26(13):3907. https://doi.org/10.3390/molecules26133907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chaplin A, Carpéné C, Mercader J. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients. 2018;10(11):1651.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shabbir U, Rubab M, Daliri EB, Chelliah R, Javed A, Oh DH. Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota. Nutrients. 2021;13(1):206. https://doi.org/10.3390/nu13010206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kasprzak-Drozd K, et al. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int J Mol Sci. 2021;22(7):3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen S, et al. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Mol. 2023;28(13):4982.

    Article  CAS  Google Scholar 

  88. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8(9):950–88.

    Article  CAS  PubMed Central  Google Scholar 

  89. Molinari R, Merendino N, Costantini L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: state-of-the-art. BioFactors. 2022;48(2):255–73.

    Article  CAS  PubMed  Google Scholar 

  90. Kumar Singh A, Cabral C, Kumar R, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients. 2019;11(9):2216. https://doi.org/10.3390/nu11092216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng T, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/A kt/GSK 3β pathway. Br J Pharmacol. 2015;172(13):3284–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pu WL, et al. Anti-inflammatory effects of Rhodiola rosea L.: a review. Biomed Pharmacother. 2020;121:109552.

    Article  CAS  PubMed  Google Scholar 

  93. Van Hul M, et al. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am J Physiol-Endocrinol Metab. 2018;314(4):E334–52.

    Article  PubMed  Google Scholar 

  94. Lee S-C, et al. Chemical composition and hypoglycemic and pancreas-protective effect of leaf essential oil from indigenous cinnamon (Cinnamomum osmophloeum Kanehira). J Agric Food Chem. 2013;61(20):4905–13.

    Article  CAS  PubMed  Google Scholar 

  95. Shang C, Lin H, Fang X, et al. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct. 2021;12(24):12194–220. https://doi.org/10.1039/d1fo01935j.

    Article  CAS  PubMed  Google Scholar 

  96. Zhao H, et al. Cinnamaldehyde improves metabolic functions in streptozotocin-induced diabetic mice by regulating gut microbiota. Drug Des Dev Ther. 2021;15:2339.

    Article  Google Scholar 

  97. Viveros A, et al. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult Sci. 2011;90(3):566–78.

    Article  CAS  PubMed  Google Scholar 

  98. Fiesel A, et al. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet Res. 2014;10(1):1–11.

    Article  Google Scholar 

  99. Alshaer S, et al. Changes in gut microbiota of alloxan-induced diabetic rats in response to orally administered combined aqueous extracts of olive leaves and ginger. J Appl Pharm Sci. 2022;12(3):150–9.

    CAS  Google Scholar 

  100. Samad MB, et al. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement Altern Med. 2017;17(1):1–13.

    Article  Google Scholar 

  101. Song S, Dang M, Kumar M. Anti-inflammatory and renal protective effect of gingerol in high-fat diet/streptozotocin-induced diabetic rats via inflammatory mechanism. Inflammopharmacology. 2019;27(6):1243–54.

    Article  CAS  PubMed  Google Scholar 

  102. Zhai L, Wang X. Syringaresinol-di-O-β-D-glucoside, a phenolic compound from Polygonatum sibiricum, exhibits an antidiabetic and antioxidative effect on a streptozotocin-induced mouse model of diabetes. Mol Med Rep. 2018;18(6):5511–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ojo OA, Osukoya OA, Ekakitie LI, et al. Gongronema latifolium leaf extract modulates hyperglycaemia, inhibits redox imbalance and inflammation in alloxan-induced diabetic nephropathy. J Diabetes Metab Disord. 2020;19(1):469–81. https://doi.org/10.1007/s40200-020-00533-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen X, et al. Polyphenol extracts from germinated mung beans can improve type 2 diabetes in mice by regulating intestinal microflora and inhibiting inflammation. Front Nutr. 2022;9.

  105. Zorraquín I, et al. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. J Sci Food Agric. 2020;100(10):3789–802.

    Article  PubMed  Google Scholar 

  106. Choi BS-Y, et al. A polyphenol-rich cranberry extract protects against endogenous exposure to persistent organic pollutants during weight loss in mice. Food Chem Toxicol. 2020;146:111832.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao L, et al. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct. 2017;8(12):4644–56.

    Article  CAS  PubMed  Google Scholar 

  108. Yuan Y, et al. Polyphenol-rich extracts from brown macroalgae Lessonia trabeculate attenuate hyperglycemia and modulate gut microbiota in high-fat diet and streptozotocin-induced diabetic rats. J Agric Food Chem. 2019;67(45):12472–80.

    Article  CAS  PubMed  Google Scholar 

  109. Song M-Y, et al. Schisandra chinensis fruit modulates the gut microbiota composition in association with metabolic markers in obese women: a randomized, double-blind placebo-controlled study. Nutr Res. 2015;35(8):655–63.

    Article  CAS  PubMed  Google Scholar 

  110. Vetrani C, Maukonen J, Bozzetto L, et al. Diets naturally rich in polyphenols and/or long-chain n-3 polyunsaturated fatty acids differently affect microbiota composition in high-cardiometabolic-risk individuals. Acta Diabetol. 2020;57(7):853–60. https://doi.org/10.1007/s00592-020-01494-9.

    Article  CAS  PubMed  Google Scholar 

  111. Sharma E, Attri DC, Sati P, et al. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol. 2022;10:1005910. https://doi.org/10.3389/fcell.2022.1005910.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Calabriso N, Massaro M, Scoditti E, Carluccio MA. Dietary polyphenols and their role in gut health. Nutrients. 2023;15(12):2650. https://doi.org/10.3390/nu15122650.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lippolis T, Cofano M, Caponio GR, De Nunzio V, Notarnicola M. Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota. Int J Mol Sci. 2023;24(4):3813. https://doi.org/10.3390/ijms24043813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 2019;24(2):370. https://doi.org/10.3390/molecules24020370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gonçalves AC, Nunes AR, Falcão A, Alves G, Silva LR. dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals (Basel). 2021;14(7):690. https://doi.org/10.3390/ph14070690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aghababaei F, Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals (Basel). 2023;16(7):1020. https://doi.org/10.3390/ph16071020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nishioka A, et al. Stratification of volunteers according to flavanone metabolite excretion and phase II metabolism profile after single doses of ‘Pera’ orange and ‘Moro’ blood orange juices. Nutrients. 2021;13(2).

  118. Mukai R, et al. Chocolate as a food matrix reduces the bioavailability of galloylated catechins from green tea in healthy women. Food Funct. 2021;12(1):408–16.

    Article  CAS  PubMed  Google Scholar 

  119. Rollyson WD, et al. Bioavailability of capsaicin and its implications for drug delivery. J Control Release. 2014;196:96–105. https://doi.org/10.1016/j.jconrel.2014.09.027.

    Article  CAS  PubMed  Google Scholar 

  120. Plamada D, Vodnar DC. Polyphenols-gut microbiota interrelationship: a transition to a new generation of prebiotics. Nutrients. 2021;14(1):137. https://doi.org/10.3390/nu14010137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Scott MB, Styring AK, McCullagh JSO. Polyphenols: bioavailability, microbiome interactions and cellular effects on health in humans and animals. Pathogens. 2022;11(7):770. https://doi.org/10.3390/pathogens11070770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martín M, Ramos S. Dietary flavonoids and insulin signaling in diabetes and obesity. Cells. 2021;10(6).

  123. Wen J-J, et al. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food Chem. 2023;404:134591.

    Article  CAS  PubMed  Google Scholar 

  124. Campos DA, Coscueta ER, Vilas-Boas AA, Silva S, Teixeira JA, Pastrana LM, Pintado MM. Impact of functional flours from pineapple by-products on human intestinal microbiota. J Funct Foods. 2020;67:103830. https://doi.org/10.1016/j.jff.2020.103830.

  125. ClinicalTrials.gov. Type 2 diabetes intervention by gut microbiota-directed diet -a open labelled RCT, NCT05541237. 2022.

  126. ClinicalTrials.gov, NCT05541237 type 2 diabetes intervention by gut microbiota-directed diet -a open labelled RCT (T2D). 2023

  127. Wang S, et al. Combined berberine and probiotic treatment as an effective regimen for improving postprandial hyperlipidemia in type 2 diabetes patients: a double blinded placebo controlled randomized study. Gut Microbes. 2022;14(1):2003176.

    Article  MathSciNet  PubMed  Google Scholar 

  128. Mirmiranpour H, et al. Effects of probiotic, cinnamon, and synbiotic supplementation on glycemic control and antioxidant status in people with type 2 diabetes; a randomized, double-blind, placebo-controlled study. J Diabetes Metab Disord. 2020;19(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  129. Sost MM, et al. A citrus fruit extract high in polyphenols beneficially modulates the gut microbiota of healthy human volunteers in a validated in vitro model of the colon. Nutrients. 2021;13(11):3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sugandh F, Chandio M, Raveena F, et al. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus. 2023;15(8):e43697. https://doi.org/10.7759/cureus.43697.

  131. Huda MN, Kim M, Bennett BJ. Modulating the microbiota as a therapeutic intervention for type 2 diabetes. Front Endocrinol. 2021;12.

  132. Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, et al. Probiotics: Versatile bioactive components in promoting human health. Medicina (Kaunas). 2020;56(9):433. https://doi.org/10.3390/medicina56090433.

  133. Blahova J, et al. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals (Basel). 2021;14(8).

Download references

Acknowledgements

The authors would like to extend their deepest gratitude to Professor Brian L. Furman, Emeritus Professor of Pharmacology, Strathclyde Institute of Pharmacy and Biomedical Sciences 161, Cathedral Street Glasgow, UK, for his diligent proofreading of this article. The authors also would like to express their gratitude to Dr. Irina Zamfir, MD, RCP London, Basildon University Hospital UK, for providing professional English editing of this manuscript and for editorial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas that is, revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and confirming to be accountable for all aspects of the work. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Daniela Calina or Javad Sharifi-Rad.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sati, P., Dhyani, P., Sharma, E. et al. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep (2024). https://doi.org/10.1007/s13668-024-00523-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13668-024-00523-1

Keywords

Navigation