Skip to main content

Advertisement

Log in

Diet, Gut Microbiome, and Cognitive Decline

  • Nutrition and the Brain (J Nasser, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

An epidemic of age-associated cognitive decline, most commonly ascribed to neurodegenerative conditions such as Alzheimer’s and Parkinson’s disease, is causing healthcare costs to soar and devastating caregivers. An estimated 6.5 million Americans are living today with Alzheimer’s disease, with 13.8 million cases projected by mid-century. Although genetic mutations are known to cause neurodegeneration, autosomal dominant disease is very rare and most sporadic cases can be attributed, at least in part, to modifiable risk factors.

Recent Findings

Diet is a potential modifiable risk factor in cognitive decline. Food communicates with the brain through a complex signaling web involving multiple cells, mediators and receptors. Gut-brain communication is modulated by microorganisms including bacteria, archaea, viruses, and unicellular eukaryotes, which together constitute the microbiota. Microbes not only play major roles in the digestion and fermentation of the food, providing nutrients and bioactive metabolites, but also reflect the type and amount of food consumed and food-borne toxic exposures. Food components modify the diversity and abundance of the microbial populations, maintain the integrity of the gut barrier, and regulate the passage of microbes and their metabolites into the blood stream where they modulate the immune system and communicate with body systems including the brain.

Summary

This paper will focus on selected mechanisms through which interactions between diet and the gut microbiota can modify brain integrity and cognitive function with emphasis on the pathogenesis of the most common dementia, Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© 2022 by the authors. Licensee MDPI, Basel, Switzerland

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Association A. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18(4):700–89. Comprehensive review of the public health impact of Alzheimer’s disease (AD).

    Article  Google Scholar 

  2. Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde Allgemeine Zeitschrift fur Psychiatrie und Psychisch-gerichtliche Medizin. Psychiatry (Edgmont). 1907;64:146–8.

    Google Scholar 

  3. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–31.

    Article  Google Scholar 

  4. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.

    Article  CAS  Google Scholar 

  5. Walker LC, Schelle J, Jucker M. The prion-like properties of amyloid-β assemblies: implications for Alzheimer’s disease. Cold Spring Harb Perspect Med. 2016;6(7).

  6. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30.

    Article  Google Scholar 

  7. •• Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53–66. Current understanding about the pathogenesis and potential treatment strategies for AD.

    Article  CAS  Google Scholar 

  8. Clifford JJ, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.

    Article  Google Scholar 

  9. Klevanski M, Herrmann U, Weyer SW, Fol R, Cartier N, Wolfer DP, et al. The APP intracellular domain is required for normal synaptic morphology, synaptic plasticity, and hippocampus-dependent behavior. J Neurosci. 2015;35(49):16018–33.

    Article  CAS  Google Scholar 

  10. Baumkötter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, et al. Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci. 2014;34(33):11159–72.

    Article  Google Scholar 

  11. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70.

    Article  CAS  Google Scholar 

  12. Francelin C, Mitter SK, Qian Q, Barodia SK, Ip C, Qi X, et al. BACE1 inhibition increases susceptibility to oxidative stress by promoting mitochondrial damage. Antioxidants (Basel). 2021;10(10).

  13. Brothers HM, Gosztyla ML, Robinson SR. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front Aging Neurosci. 2018;10.

  14. Chacón-Quintero MV, Pineda-López LG, Villegas-Lanau CA, Posada-Duque R, Cardona-Gómez GP. Beta-secretase 1 underlies reactive astrocytes and endothelial disruption in neurodegeneration. Front Cell Neurosci. 2021;15.

  15. Tecalco–Cruz AC, Pedraza-Chaverri J, Briones-Herrera A, Cruz-Ramos E, López–Canovas L, Zepeda–Cervantes J. Protein degradation-associated mechanisms that are affected in Alzheimer’s disease. Mol Cell Biochem. 2022.

  16. Xiang Y, Bu X-L, Liu Y-H, Zhu C, Shen L-L, Jiao S-S, et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol. 2015;130(4):487–99.

    Article  CAS  Google Scholar 

  17. Thibaudeau TA, Anderson RT, Smith DM. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun. 2018;9(1):1097.

    Article  Google Scholar 

  18. Yan R. Physiological functions of the β-site amyloid precursor protein cleaving enzyme 1 and 2. Front Mol Neurosci. 2017;10.

  19. Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. Role of polyphenols on gut microbiota and the ubiquitin-proteasome system in neurodegenerative diseases. J Agric Food Chem. 2021;69(22):6119–44.

    Article  CAS  Google Scholar 

  20. Chen GY, Stappenbeck TS. Mucus, it is not just a static barrier. Sci Signal. 2014;7(323):pe11-pe.

  21. Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci. 2011;108(Supplement 1):4659–65.

    Article  CAS  Google Scholar 

  22. McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483(7389):345–9.

    Article  CAS  Google Scholar 

  23. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. 2013;342(6157):447–53.

    Article  CAS  Google Scholar 

  24. Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–32.

    Article  CAS  Google Scholar 

  25. Benjamin Jamaal L, Sumpter R, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe. 2013;13(6):723–34.

    Article  CAS  Google Scholar 

  26. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14(1):9–23.

    Article  CAS  Google Scholar 

  27. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3(4):331–41.

    Article  CAS  Google Scholar 

  28. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–33.

    Article  CAS  Google Scholar 

  29. Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol. 2020;11.

  30. Soto-Martin EC, Warnke I, Farquharson FM, Christodoulou M, Horgan G, Derrien M, et al. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio. 2020;11(4).

  31. • Rose P, Moore PK, Whiteman M, Kirk C, Zhu Y-Z. Diet and hydrogen sulfide production in mammals. Antioxidants Redox Signal. 2021;34(17):1378–93. Current understanding of the processes of hydrogen sulfide production and possible value of dietary sulfur donors.

  32. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–49.

    Article  CAS  Google Scholar 

  33. Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genetics. 2015;6:148.

  34. Esterházy D, Mucida D. Serum amyloid A proteins take retinol for a ride. Trends Immunol. 2014;35(11):505–6.

    Article  Google Scholar 

  35. Wang C, Lau CY, Ma F, Zheng C. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration. Proc Natl Acad Sci. 2021;118(34): e2106504118.

    Article  CAS  Google Scholar 

  36. Verhaar BJH, Hendriksen HMA, de Leeuw FA, Doorduijn AS, van Leeuwenstijn M, Teunissen CE, et al. Gut microbiota composition is related to AD pathology. Front Immunol. 2022;12.

  37. Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci. 2018;19(10):610–21.

    Article  CAS  Google Scholar 

  38. Shigemoto-Mogami Y, Hoshikawa K, Sato K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci. 2018;12(494).

  39. Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood–brain barrier. Semin Cell Dev Biol. 2015;38:2–6.

    Article  Google Scholar 

  40. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–44.

    Article  CAS  Google Scholar 

  41. Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, et al. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep. 2017;7(1):2426.

    Article  Google Scholar 

  42. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.

    Article  CAS  Google Scholar 

  43. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.

    Article  CAS  Google Scholar 

  44. Gibson GR. Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr. 1999;129:1438S-S1441.

    Article  CAS  Google Scholar 

  45. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.

  46. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  Google Scholar 

  47. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut. 2017;222:1–9.

    Article  CAS  Google Scholar 

  48. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.

    Article  CAS  Google Scholar 

  49. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37(1):16–23.

    Article  CAS  Google Scholar 

  50. Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11(1):362.

    Article  CAS  Google Scholar 

  51. • Laudisi F, Stolfi C, Monteleone G. Impact of food additives on gut homeostasis. Nutrients. 2019;11(10):2334. Review of the impact of food production agents and additives and their potential to cause gut dysbiosis.

    Article  CAS  Google Scholar 

  52. Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev. 2015;14(6):479–89.

    Article  CAS  Google Scholar 

  53. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414–27.

    Article  CAS  Google Scholar 

  54. Laudisi F, Di Fusco D, Dinallo V, Stolfi C, Di Grazia A, Marafini I, et al. The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell Mol Gastroenterol Hepatol. 2019;7(2):457–73.

    Article  Google Scholar 

  55. Li H, Li S, Yang H, Zhang Y, Zhang S, Ma Y, et al. Association of ultra-processed food consumption with risk of dementia: a prospective cohort study. Available at SSRN 3978652. 2021.

  56. Fardet A. Wheat-based foods and non celiac gluten/wheat sensitivity: is drastic processing the main key issue? Med Hypotheses. 2015;85(6):934–9.

    Article  CAS  Google Scholar 

  57. Desai Mahesh S, Seekatz Anna M, Koropatkin Nicole M, Kamada N, Hickey Christina A, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-53.e21.

    Article  CAS  Google Scholar 

  58. Vamanu E, Pelinescu D, Gatea F, Sârbu I. Altered in vitro metabolomic response of the human microbiota to sweeteners. Genes. 2019;10(7):535.

    Article  CAS  Google Scholar 

  59. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181.

    Article  CAS  Google Scholar 

  60. Yu Z, Guo J. Non-caloric artificial sweeteners exhibit antimicrobial activity against bacteria and promote bacterial evolution of antibiotic tolerance. J Hazard Mater. 2022;433: 128840.

    Article  CAS  Google Scholar 

  61. Roe K. An alternative explanation for Alzheimer’s disease and Parkinson’s disease initiation from specific antibiotics, gut microbiota dysbiosis and neurotoxins. Neurochem Res. 2022;47(3):517–30.

    Article  CAS  Google Scholar 

  62. Boeckel TPV, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci. 2015;112(18):5649–54.

    Article  Google Scholar 

  63. Howitz KT, Sinclair DA. Xenohormesis: sensing the chemical cues of other species. Cell. 2008;133(3):387–91.

    Article  CAS  Google Scholar 

  64. • Trovato Salinaro A, Pennisi M, Di Paola R, Scuto M, Crupi R, Cambria MT, et al. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun Ageing. 2018;15:8-. Background on neurohormesis and neuroinflammation and data on the ability of nutritional mushrooms to elicit survival systems in humans.

  65. Murugaiyah V, Mattson MP. Neurohormetic phytochemicals: an evolutionary–bioenergetic perspective. Neurochem Int. 2015;89:271–80.

    Article  CAS  Google Scholar 

  66. Lee J, Jo D-G, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev. 2014;66(3):815–68.

    Article  Google Scholar 

  67. Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20(7):709–11.

    Article  CAS  Google Scholar 

  68. Calabrese EJ, Agathokleous E, Kozumbo WJ, Stanek EJ, Leonard D. Estimating the range of the maximum hormetic stimulatory response. Environ Res. 2019;170:337–43.

    Article  CAS  Google Scholar 

  69. Özugur S, Kunz L, Straka H. Relationship between oxygen consumption and neuronal activity in a defined neural circuit. BMC Biol. 2020;18(1):76.

    Article  Google Scholar 

  70. Xu J, Begley P, Church SJ, Patassini S, McHarg S, Kureishy N, et al. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia. Sci Rep. 2016;6(1):27524.

    Article  CAS  Google Scholar 

  71. Johnson RJ, Gomez-Pinilla F, Nagel M, Nakagawa T, Rodriguez-Iturbe B, Sanchez-Lozada LG, et al. Cerebral fructose metabolism as a potential mechanism driving Alzheimer’s disease. Front Aging Neurosc. 2020;12.

  72. Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: do natural products and their derivatives help? Free Radical Biol Med. 2022;178:330–46.

    Article  CAS  Google Scholar 

  73. Liu D, Ke Z, Luo J. Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Mol Neurobiol. 2017;54(7):5440–8.

    Article  CAS  Google Scholar 

  74. Beltramo E, Mazzeo A, Porta M. Thiamine and diabetes: back to the future? Acta Diabetol. 2021;58(11):1433–9.

    Article  CAS  Google Scholar 

  75. Sun Y, Peng C, Wang J, Sun H, Guo S, Zhang H. Metabolic footprint analysis of volatile metabolites to discriminate between different key time points in the fermentation and storage of starter cultures and probiotic Lactobacillus casei Zhang milk. J Dairy Sci. 2021;104(3):2553–63.

    Article  CAS  Google Scholar 

  76. Morris AAM. Cerebral ketone body metabolism. J Inherit Metab Dis. 2005;28(2):109–21.

    Article  CAS  Google Scholar 

  77. • Kolb H, Kempf K, Röhling M, Lenzen-Schulte M, Schloot NC, Martin S. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 2021;19(1):313. Comprehensive discussion of the multiple actions of ketones.

    Article  CAS  Google Scholar 

  78. Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem. 2010;15(1):61–76.

    Article  CAS  Google Scholar 

  79. Xu J, Church SJ, Patassini S, Begley P, Waldvogel HJ, Curtis MA, et al. Evidence for widespread, severe brain copper deficiency in Alzheimer’s dementia†. Metallomics. 2017;9(8):1106–19.

    Article  CAS  Google Scholar 

  80. Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of copper in the onset of Alzheimer’s disease compared to other metals. Front Aging Neurosci. 2018;9.

  81. Liu X-X, Wu P-F, Liu Y-Z, Jiang Y-L, Wan M-D, Xiao X-W, et al. Association between serum vitamins and the risk of Alzheimer’s disease in chinese population. J Alzheimer’s Dis. 2022;85:829–36.

    Article  Google Scholar 

  82. Wang Q, Zhao J, Chang H, Liu X, Zhu R. Homocysteine and folic acid: risk factors for Alzheimer’s disease—an updated meta-analysis. Front Aging Neurosci. 2021;13:225.

    Google Scholar 

  83. Yin G, Gan Y, Jiang H, Yu T, Liu M, Zhang Y, et al. Direct quantification and visualization of homocysteine, cysteine, and glutathione in Alzheimer’s and Parkinson’s disease model tissues. Anal Chem. 2021;93(28):9878–86.

    Article  CAS  Google Scholar 

  84. Ufnalska I, Drew SC, Zhukov I, Szutkowski K, Wawrzyniak UE, Wróblewski W, et al. Intermediate Cu(II)-thiolate species in the reduction of Cu(II)GHK by glutathione: a handy chelate for biological Cu(II) reduction. Inorg Chem. 2021;60(23):18048–57.

    Article  CAS  Google Scholar 

  85. Zheng L, Han P, Liu J, Li R, Yin W, Wang T, et al. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther. 2015;148:66–84.

    Article  CAS  Google Scholar 

  86. Dringen R, Pfeiffer B, Hamprecht B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci. 1999;19(2):562–9.

    Article  CAS  Google Scholar 

  87. McBean GJ. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids. 2012;42(1):199–205.

    Article  CAS  Google Scholar 

  88. Fenech M. Folate, DNA damage and the aging brain. Mech Ageing Dev. 2010;131(4):236–41.

    Article  CAS  Google Scholar 

  89. Linnebank M, Lutz H, Jarre E, Vielhaber S, Noelker C, Struys E, et al. Binding of copper is a mechanism of homocysteine toxicity leading to COX deficiency and apoptosis in primary neurons, PC12 and SHSY-5Y cells. Neurobiol Dis. 2006;23(3):725–30.

    Article  CAS  Google Scholar 

  90. Dong D, Wang B, Yin W, Ding X, Yu J, Kang YJ. Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury. PLoS One. 2013;8(10).

  91. • Bagheri S, Saboury AA, Haertlé T, Rongioletti M, Saso L. Probable reasons for neuron copper deficiency in the brain of patients with Alzheimer’s disease: the complex role of amyloid. Inorganics. 2022;10(1):6. Discussion of the role of inadequate intracellular copper concentrations in the brain of AD patients.

    Article  CAS  Google Scholar 

  92. Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, et al. Mechanistic link between vitamin B12 and Alzheimer’s disease. Biomolecules. 2022;12(1):129.

    Article  CAS  Google Scholar 

  93. Robinson N, Grabowski P, Rehman I. Alzheimer’s disease pathogenesis: is there a role for folate? Mech Ageing Dev. 2018;174:86–94. Current understanding of the role of folate in the pathogenesis of AD.

    Article  CAS  Google Scholar 

  94. Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica. 2014;44(5):480–8.

    Article  CAS  Google Scholar 

  95. Serot JM, Christmann D, Dubost T, Béné MC, Faure GC. CSF-folate levels are decreased in late-onset AD patients. J Neural Transm. 2001;108(1):93–9.

    Article  CAS  Google Scholar 

  96. Johanson CE, Johanson NL. Choroid plexus blood-CSF barrier: major player in brain disease modeling and neuromedicine. J Neurol Neuromed. 2018;3(4).

  97. • Giovinazzo D, Bursac B, Sbodio JI, Nalluru S, Vignane T, Snowman AM, et al. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci. 2021;118(4): e2017225118. Discussion of hydrogen sulfide actions in protecting the brain.

    Article  CAS  Google Scholar 

  98. • Chu X, Raju RP. Regulation of NAD+ metabolism in aging and disease. Metabolism. 2022;126: 154923. Excellent review of NAD metabolism in aging and disease.

    Article  CAS  Google Scholar 

  99. Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53.

    Article  Google Scholar 

  100. •• Chellappa K, McReynolds MR, Lu W, Zeng X, Makarov M, Hayat F, et al. NAD precursors cycle between host tissues and the gut microbiome. bioRxiv. 2021. Careful analysis of the microbe-host cycle in which NAD from precursors and fermented carbohydrates is made available to both participants.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Ettinger.

Ethics declarations

Human and Animal Rights and Informed Consent

Studies cited in this article were in compliance with human informed consent and animal rights requirements.

Conflict of Interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition and the Brain

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettinger, S. Diet, Gut Microbiome, and Cognitive Decline. Curr Nutr Rep 11, 643–652 (2022). https://doi.org/10.1007/s13668-022-00435-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-022-00435-y

Keywords

Navigation