Skip to main content

Advertisement

Log in

Human Breast Milk: Bioactive Components, from Stem Cells to Health Outcomes

  • HOT TOPIC
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Breast milk (BM) is a peculiar fluid owing unique properties and resulting the ideal food during early neonatal period. As widely known, it can improve the outcome of both neonate and lactating mother, influencing their whole life. BM is characterized by several beneficial components; among these, a great role is played by BM own and specific microbiome, deeply investigated in many studies. Moreover, the use of metabolomics in BM analysis allowed a better characterization of its metabolic pathways that vary according to lactation stage and neonatal gestational age. The aim of this review is to describe growth factors, cytokines, immunity mediators, and stem cells (SCs) contained in BM and investigate their functions and effects on neonatal outcome, especially focusing on immuno- and neurodevelopment.

Recent Findings

We evaluated recent and updated literature on this field. The article that we analyzed to write this review have been found in MEDLINE using breast milk-derived stem cells, biofactors, growth factors, breastfeeding-related outcomes, neurodevelopment, and neonatal immunological system as keywords. Discovering and characterizing BM components could result very useful to clarify the pathophysiology of their influence on neonatal growth and even to improve artificial formulations’ composition. Moreover, since SCs abilities and their involvement in the development of several diseases, they could help to discover specific targets for new therapies.

Summary

It could be useful to characterize BM-derived SC markers, properties, and variations during lactation stages, to understand their potential role in therapeutic applications, since they could be noninvasively isolated from BM. More studies will help to describe more in detail the characteristics of mother-to-child communication through breastfeeding and its potential role in the next future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

α-linolenic acid

AA:

Arachidonic acid

ABPs:

Antibacterial peptides

BDNF:

Brain-derived neurotrophic factor

BM:

Breast milk

BMDSCs:

Breast milk-derived stem cells

BMI:

Body mass index

BTN:

Butyrophilin

BW:

Birth weight

CLD:

Chronic lung disease

CD:

Cluster of differentiation

CK:

Cytokeratin

CNS:

Central nervous system

CRP:

C-reactive protein

Cu:

Copper

DHA:

Docosahexaenoic acid

EGF:

Epidermal growth factor

EGF:

Epidermal growth factor

ELBW:

Extremely low birth weight

EMT:

Epithelial-mesenchymal transition

Fas:

Fatty acids

FGF:

Fibroblast growth factors

GA:

Gestational age

G-CSF:

Granulocyte-colony stimulating factor

GDNF:

Glial cell line-derived neurotrophic factor

GFs:

Growth factors

GLP-1:

Glucagon-like peptide-1

HB-EGF:

Heparin-binding epidermal growth factor

hESCs:

Embryonic SCs

HGF:

Hepatocyte growth factor

HMOs:

Human milk oligosaccharides

Ig:

Immunoglobulins

Il:

Interleukins

IFN:

Interferon

IGFs:

Insulin growth factors

K:

Potassium

LA:

Linoleic acid

LF:

Lactoferrin

MGFM:

Milk fat globule membrane

miRNA:

microRNA

MLNs:

Mesenteric lymph nodes

MSCs:

Mesenchymal stem cells

MUC1:

Mucin 1

NANOG:

Homeobox protein

NEC:

Necrotizing enterocolitis

NICU:

Neonatal intensive care unit

NK:

Natural killers

NT-3:

Neurotropin

OCT4:

Octamer-binding transcription factor 4

ROP:

Retinopathy of prematurity

SCs:

Stem cells

SGA:

Small for GA

SOD:

Superoxido-dysmutase

SOX2:

Sex determining region Y-box

SP:

Side population

tdT+:

tdTomato + cells

TGF:

Transforming growth factor

TNF:

Tumor necrosis factors

VEGF:

Vascular endothelial growth factor

VLBW:

Very low birth weight

XDH/XO or XOR:

Xanthine oxidoreductase

Zn:

Zinc

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reali A, Puddu M, Pintus MC, Marcialis MA, Pichiri G, Coni P, et al. Multipotent stem cells of mother’s milk. JPNIM. 2016;5:e50103. https://doi.org/10.7363/050103.

    Article  Google Scholar 

  2. Hassiotou F, Heath B, Ocal O, Filgueira L, Geddes D, Hartmann P, et al. Breastmilk stem cell transfer from mother to neonatal organs. FASEB J. 2014;28:216.4.

    Google Scholar 

  3. Sakaguchi K, Koyanagi A, Kamachi F, Harauma A, Chiba A, Hisata K, et al. Breast-feeding regulates immune system development via transforming growth factor- beta in mice pups. Pediatr Int. 2018;60:224–31. https://doi.org/10.1111/ped.13507.

    Article  CAS  PubMed  Google Scholar 

  4. Brenmoehl J, Ohde D, Wirthgen E, Hoeflic A. Cytokines in milk and the role of TGF-beta. Best Pract Res Clin Endocrinol Metab. 2018;32:47–56. https://doi.org/10.1016/j.beem.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  5. Garofalo R. Cytokines in human milk. J Pediatr. 2010;156:S36e40. https://doi.org/10.1016/j.jpeds.2009.11.019.

    Article  CAS  Google Scholar 

  6. Fanos V, Pintus R, Reali A, Dessì A. Miracles and mysteries of breast milk: from Egyptians to the 3 M’s (metabolomics, microbiomics, multipotent stem cells). JPNIM. 2017;6:e060204. https://doi.org/10.7363/060204.

    Article  Google Scholar 

  7. Demmelmair H, Prell C, Timby N, Lonnerdal B. Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients. 2017;9:E817. https://doi.org/10.3390/nu9080817.

    Article  CAS  PubMed  Google Scholar 

  8. AAP. Breastfeeding and maternal and infant health outcomes in developed countries. AAP Grand Rounds. 2007;18:15–6.

    Article  Google Scholar 

  9. Fanos V. Metabolomics, milk-oriented microbiota (MOM) and multipotent stem cells: the future of research on breast milk. JPNIM. 2015;4:e040115. https://doi.org/10.7363/040115.

    Article  Google Scholar 

  10. German BJ, Smilowitz JT, Lebrilla CB. Metabolomics and milk: the development of the microbiota in breastfed infants. In: Kochhar S, Martin F-P, editors. Metabonomics and gut microbiota in nutrition and disease (Molecular and integrative toxicology). London: Humana press (Springer); 2015. p. 147–67.

    Chapter  Google Scholar 

  11. Anatolitou F. Human milk benefits and breastfeeding. JPNIM. 2012;1:11–8. https://doi.org/10.7363/010113.

    Article  Google Scholar 

  12. Yang T, Zhang L, Bao W, Rong S. Nutritional composition of breast milk in Chinese women: a systematic review. Asia Pac J Clin Nutr. 2018;27:491–502. https://doi.org/10.6133/apjcn.042017.13.

    Article  CAS  PubMed  Google Scholar 

  13. •• Bardanzellu F, Fanos V, Strigini FAL, Artini PG, Peroni DG. Human breast milk: exploring the linking ring among emerging components. Front Pediatr. 2018;6:215. https://doi.org/10.3389/fped.2018.00215Paper summarizing the last evidence regarding metabolomics and microbiomics in human breast milk.

  14. Pecoraro L, Agostoni C, Pepaj O, Pietrobelli A. Behind human milk and breastfeeding: not only food. Int J Food Sci Nutr. 2018;69:641–6. https://doi.org/10.1080/09637486.2017.1416459.

    Article  CAS  PubMed  Google Scholar 

  15. Cesare Marincola F, Dessì A, Corbu S, Reali A, Fanos V. Clinical impact of human breast milk metabolomics. Clin Chim Acta. 2015;451:103–6. https://doi.org/10.1016/j.cca.2015.02.021.

    Article  CAS  PubMed  Google Scholar 

  16. Kaingade P, Somasundaram I, Nikam A, Behera P, Kulkarni S, Patel J. Breast milk cell components and its beneficial effects on neonates: need for breast milk cell banking. JPNIM. 2017;6:060115. https://doi.org/10.7363/060115.

    Article  Google Scholar 

  17. Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of human breast milk. A comprehensive review of the composition and role of milk metabolites in child development. J Agric Food Chem. 2018;66:11881–96. https://doi.org/10.1021/acs.jafc.8b04031.

    Article  CAS  PubMed  Google Scholar 

  18. Bardanzellu F, Faa G, Fanni D, Fanos V, Marcialis MA. Regenerating the womb: the good, bad and ugly potential of the endometrial stem cells. Curr Reg Med. 2017;7:33–45. https://doi.org/10.2174/2468424408666180705125036.

    Article  Google Scholar 

  19. Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017;22:11. https://doi.org/10.1186/s11658-017-0042-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baudesson de Chanville A, Brevaut-Malaty V, Garbi A, Tosello B, Baumstarck K, Gire C. Analgesic effect of maternal human milk odor on premature neonates: a randomized controlled trial. J Hum Lact. 2017;33:300–8. https://doi.org/10.1177/0890334417693225.

    Article  PubMed  Google Scholar 

  21. Badiee Z, Asghari M, Mohammadizadeh M. The calming effect of maternal breast milk odor on premature infants. Pediatr Neonatol. 2013;54:322–5. https://doi.org/10.1016/j.pedneo.2013.04.004.

    Article  PubMed  Google Scholar 

  22. Rioualen S, Durier V, Hervé D, Misery L. Cortical pain response of newborn infants to venepuncture: a randomised controlled trial comparing analgesic effects of sucrose versus breastfeeding. Clin J Pain. 2018;34:1. https://doi.org/10.1097/AJP.0000000000000581.

    Article  Google Scholar 

  23. Sundekilde UK, Downey E, O’Mahony JA, O’Shea CA, Ryan CA, Kelly AL, et al. The effect of gestational and lactational age on the human milk metabolome. Nutrients. 2016;8:304. https://doi.org/10.3390/nu8050304.

    Article  CAS  PubMed Central  Google Scholar 

  24. Hurst NM. The 3 M’s of breast-feeding the preterm infant. J Perinat Neonatal Nurs. 2007;21:234–9.

    Article  Google Scholar 

  25. Kobata R, Tsukahara H, Ohshima Y, Ohta N, Yokuriki S, Mayumi M. High levels of growth factors in human breast milk. Early Hum Dev. 2008;84:67–9. https://doi.org/10.1016/j.earlhumdev.2007.07.005.

    Article  CAS  PubMed  Google Scholar 

  26. Underwood MA. Human milk for the premature infant. Pediatr Clin N Am. 2013;60:189–207. https://doi.org/10.1016/j.pcl.2012.09.008.

    Article  Google Scholar 

  27. Bhatia J. Human milk and the premature infant. Ann Nutr Metab. 2013;62:8–14. https://doi.org/10.1159/000351537.

    Article  CAS  PubMed  Google Scholar 

  28. Paul VK, Singh M, Srivastava LM, Arora NK, Deorari AK. Macronutrient and energy content of breast milk of mothers delivering prematurely. Indian J Pediatr. 1997;64:379–82.

    Article  CAS  Google Scholar 

  29. Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr. 2011;30:215–20. https://doi.org/10.1016/j.clnu.2010.08.003.

    Article  CAS  PubMed  Google Scholar 

  30. Bardanzellu F, Fanos V, Reali A. “Omics” in human colostrum and mature milk: looking to old data with new eyes. Nutrients. 2017;9:843. https://doi.org/10.3390/nu9080843.

    Article  CAS  PubMed Central  Google Scholar 

  31. Yang M, Cao X, Wu R, Liu B, Ye W, Yue X, et al. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS. Int J Food Sci Nutr. 2017;68:671–81. https://doi.org/10.1080/09637486.2017.1279129.

    Article  CAS  PubMed  Google Scholar 

  32. LeBouder E, Rey-Nores JE, Raby AC, Affoltern M, Vidal K, Thornton CA, et al. Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk. J Immunol. 2006;176:3742–52.

    Article  CAS  Google Scholar 

  33. Levy O. Innate immunity of the newborn: basic mechanism and clinical correlates. Nat Rev Immunol. 2007;7:379–90. https://doi.org/10.1038/nri2075.

    Article  CAS  PubMed  Google Scholar 

  34. Cacho NT, Lawrence RM. Innate immunity and breast milk. Front Immunol. 2017;8:584. https://doi.org/10.3389/fimmu.2017.00584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaingade PM, Somasundaram I, Nikam AB, Sarang SA, Patel JS. Assessment of growth factors secreted by human breastmilk mesenchymal stem cells. Breastfeed Med. 2016;11:26–31. https://doi.org/10.1089/bfm.2015.0124.

    Article  PubMed  Google Scholar 

  36. Castellote C, Casillas R, Ramirez-Santana C, Perez-Cano FJ, Castell M, Moretones MG, et al. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr. 2011;141:1181–7. https://doi.org/10.3945/jn.110.133652.

    Article  CAS  PubMed  Google Scholar 

  37. Hamosh M. Bioactive factors in human milk. Pediatr Clin N Am. 2001;48:69–86.

    Article  CAS  Google Scholar 

  38. Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res. 2004;64:3037–45.

    Article  CAS  Google Scholar 

  39. Nikadi PO, Merrit TA, Pillers DA. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab. 2009;97:95–101. https://doi.org/10.1016/j.ymgme.2009.01.015.

    Article  CAS  Google Scholar 

  40. Jimenez-Gomez G, Benavente-Fernandez I, Matias-Vega M, Lechuga-Campoy JL, Saez-Benito A, Lechuga-Sancho AM, et al. Hepatocyte growth-factor as an indicator of neonatal maturity. J Pediatr Endocrinol Metab. 2013;26:709–14. https://doi.org/10.1515/jpem-2012-0303.

    Article  CAS  PubMed  Google Scholar 

  41. Ruiz L, Espinosa-Martos I, García-Carral C, Manzano S, McGuire MK, Meehan CL, et al. What’s normal? Immune profiling of human milk from healthy women living in different geographical and socioeconomic settings. Front Immunol. 2017;8:696. https://doi.org/10.3389/fimmu.2017.00696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moles L, Manzano S, Fernández L, Montilla A, Corzo N, Ares S, et al. Bacteriological, biochemical and immunological properties of colostrum and mature milk from mothers extremely preterm infants. J Pediatr Gastroenterol Nutr. 2015;60:120–6. https://doi.org/10.1097/MPG.0000000000000560.

    Article  CAS  PubMed  Google Scholar 

  43. Schack-Nielsen L, Michaelsen KF. Breastfeeding and future health. Curr Opin Clin Nutr Metab Care. 2006;9:289–96. https://doi.org/10.1097/01.mco.0000222114.84159.79.

    Article  PubMed  Google Scholar 

  44. Patki S, Patki U, Patil R, Indumathi S, Kaingade P, Bulbule A, et al. Comparison of the levels of the growth factors in umbilical cord serum and human milk and its clinical significance. Cytokine. 2012;59:305–8. https://doi.org/10.1016/j.cyto.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  45. Zachary I. VEGF signaling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans. 2003;31:1171–7. https://doi.org/10.1042/bst0311171.

    Article  CAS  PubMed  Google Scholar 

  46. Siafakas C, Anatolitou F, Fusunyan RD, Walker WA, Sanderson IR. Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr Res. 1999;45:652–7. https://doi.org/10.1203/00006450-199905010-00007.

    Article  CAS  PubMed  Google Scholar 

  47. Funakoshi H, Nakamura T. Hepatocyte growth factor: from diagnosis to clinical application. Clin Chim Acta. 2003;327:1–23.

    Article  CAS  Google Scholar 

  48. Collado MC, Santaella M, Mira-Pascual L, Martinez-Arias E, Khodayar-Pardo P, Ros G, et al. Longitudinal study of cytokine expression, lipid profile and neuronal growth factors in human breast milk from term and preterm. Nutrients. 2015;19:8577–91. https://doi.org/10.3390/nu7105415.

    Article  CAS  Google Scholar 

  49. Peila C, Coscia A, Bertino E. Holder pasteurization affects S100B concentrations in human milk. J Matern Fetal Neonatal Med. 2017;28:1–5. https://doi.org/10.1080/14767058.2017.1291618.

    Article  CAS  Google Scholar 

  50. Torres-Castro P, Abril-Gil M, Rodríguez-Lagunas MJ, Castell M, Perez-Cano FJ, Franch A. TGF-Beta 2, EGF, and FGF21 growth factors present in breast milk promote mesenteric lymph node lymphocytes maturation in suckling rats. Nutrients. 2018;10:E1171. https://doi.org/10.3390/nu10091171.

    Article  CAS  PubMed  Google Scholar 

  51. Young BE, Levek C, Reynolds RM, Rudolph MC, MacLean P, Hernandez PL, et al. Bioactive components in human milk are differentially associated with rates of lean and fat mass deposition in infants of mothers with normal vs. elevated BMI. Pediatr Obes. 2018;13:598–606. https://doi.org/10.1111/ijpo.12394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murphy J, Pfeiffer RM, Lynn BCD, Caballero AI, Browne EP, Punska EC, et al. Pro-inflammatory cytokines and growth factors in human milk: an exploratory analysis of racial differences to inform breast cancer etiology. Breast Cancer Res Treat. 2018;172:209–19. https://doi.org/10.1007/s10549-018-4907-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. • Sitarik AR, Bobbitt KR, Havstad SL, Fujimura KE, Levin AM, Zoratti EM, et al. Breast milk TGF beta is associated with neonatal gut microbial composition. J Pediatr Gastroenterol Nutr. 2018;65:e60–7. https://doi.org/10.1097/MPG.0000000000001585Interesting study investigating the role of BM TGFβ1, TGFβ2, and IL-10 in shaping the neonatal gut microbiome in 52 mother-child couples, modulating neonatal outcome and including neonatal immune system development.

    Article  CAS  Google Scholar 

  54. Abstract from the Academy of breastfeeding medicine 20th Annual international meeting Los Angeles California. Breastfeed Med. 2015;10:1–20. https://doi.org/10.1089/bfm.2015.29009.Abstracts.

  55. MohanKumar K, Namachivayam K, Ho TT, Torres BA, Ohls RK. Cytokines and growth factors in the developing intestine and during necrotizing enterocolitis. Semin Perinatol. 2017;41:52–60. https://doi.org/10.1053/j.semperi.2016.09.018.

    Article  PubMed  Google Scholar 

  56. Munblit D, Abrol P, Sheth S, Chow LY, Khaleva E, Asmanov A, et al. Levels of growth factors and IgA in the colostrums of women from Burundi and Italy. Nutrients. 2018;10:E1216. https://doi.org/10.3390/nu10091216.

    Article  CAS  PubMed  Google Scholar 

  57. Kaingade P, Somasundaram I, Sharma A, Patel D, Marappagounder D. Cellular components, including stem-like cells, of preterm mother’s mature milk as compared with those in her colostrum: a pilot study. Breastfeed Med. 2017;12:446–9. https://doi.org/10.1089/bfm.2017.0063.

    Article  PubMed  Google Scholar 

  58. Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, et al. Compositional dynamics of the milk fat globule and its role in infant development. Front Pediatr. 2018;6:313. https://doi.org/10.3389/fped.2018.00313.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Khan MU, Pirzadeh M, Förster CY, Shityakov S, Shariati MA. Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives. Biomolecules. 2018;8:E110. https://doi.org/10.3390/biom8040110.

    Article  CAS  PubMed  Google Scholar 

  60. Nunes M, da Silva CH, Bosa VL, Rombaldi Bernardi J, Ribas Werlang IC, Zubaran GM, et al. Could a remarkable decrease in leptin and insulin levels from colostrums to mature milk contribute to early growth catch-up of SGA infants? BMC Pregnancy Childbirth. 2017;17:410. https://doi.org/10.1186/s12884-017-1593-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Whitaker KM, Marino RC, Haapala JL, Foster L, Smith KD, Teague AM, et al. Associations of maternal weight status before, during and after pregnancy with inflammatory markers in breast milk. Obesity. 2018;26:1659–60. https://doi.org/10.1002/oby.22025.

    Article  CAS  PubMed  Google Scholar 

  62. Twigger AJ, Küffer GK, Geddes DT, Filgueria L. Expression of granulisyn, perforin and granzymes in hum and milk over lactation and in the case of maternal infection. Nutrients. 2018;10:E1230. https://doi.org/10.3390/nu10091230.

    Article  CAS  PubMed  Google Scholar 

  63. Pichiri G, Lanzano D, Piras M, Dessì A, Reali A, Puddu M, et al. Human breast milk stem cells: a new challenge for perinatologists. JPNIM. 2016;5:050120. https://doi.org/10.7363/050120.

    Article  Google Scholar 

  64. Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29:171–82. https://doi.org/10.1177/0890334413477242.

    Article  PubMed  Google Scholar 

  65. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am. 2013;60:49–74. https://doi.org/10.1016/j.pcl.2012.10.002.

    Article  Google Scholar 

  66. Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 2007;329:129–36. https://doi.org/10.1007/s00441-007-0390-x.

    Article  PubMed  Google Scholar 

  67. Hosseini SM, Talaei-Khozani T, Sani M, Owrangi B. Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol Res Int. 2014;807896. https://doi.org/10.1155/2014/807896.

    Article  Google Scholar 

  68. Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010;23:35–40. https://doi.org/10.1111/j.1749-0774.2010.00083.x.

    Article  CAS  PubMed  Google Scholar 

  69. Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30:2164–74. https://doi.org/10.1002/stem.1188.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kakulas F, Jeddes DT, Hartmann PE. Breastmilk is unlikely to be a source of mesenchymal stem cells. Breastfed Med. 2016;11:150–1. https://doi.org/10.1089/bfm.2016.0021.

    Article  Google Scholar 

  71. Twigger A, Hepworth AR, Lai CT, Chetwynd E, Stuebe AM, Blancafort P, et al. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci Rep. 2015;5:12933. https://doi.org/10.1038/srep12933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell. 2001;1:467–75.

    Article  CAS  Google Scholar 

  73. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296:1046–9. https://doi.org/10.1126/science.1067431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Russo J, Russo IH. Development of the human breast. Maturitas. 2004;49:2–15. https://doi.org/10.1016/j.maturitas.2004.04.011.

    Article  CAS  PubMed  Google Scholar 

  75. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70. https://doi.org/10.1101/gad.1061803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JK. Unravelling the mystery of stem/progenitor cells in human breastmilk. PLoS One. 2010;5:14421. https://doi.org/10.1371/journal.pone.0014421.

    Article  CAS  Google Scholar 

  77. Twigger AJ, Hodgetts S, Filgueira L, Hartmann PE, Hassiotou F. From breast milk to brains: the potential of stem cells in human milk. J Hum Lact. 2013;29:136–9. https://doi.org/10.1177/0890334413475528.

    Article  PubMed  Google Scholar 

  78. Esmailpour T, Huang T. TBX3 promotes embryonic stem cell proliferation and neuroepithelial differentiation in a differentiation stage-dependent manner. Stem Cells. 2012;30:2152–63. https://doi.org/10.1002/stem.1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Faa G, Fanos V, Puddu M, Reali A, Dessì A, Pichiri G, et al. Breast milk stem cells: four questions looking for an answer. JPNIM. 2016;5:050203. https://doi.org/10.7363/050203.

    Article  Google Scholar 

  80. Sani M, Hosseini SM, Salmannejad M, Aleahmad F, Ebrahimi S, Jahanshahi S, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int. 2015;39:611–8. https://doi.org/10.1002/cbin.10432.

    Article  CAS  PubMed  Google Scholar 

  81. Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D. Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechonology. 2013;65:385–93. https://doi.org/10.1007/s10616-012-9492-8.

    Article  CAS  Google Scholar 

  82. Field CJ. The immunological components of human milk and their effect on immune development in infants. J Nutr. 2005;135:1–4. https://doi.org/10.1093/jn/135.1.1.

    Article  CAS  PubMed  Google Scholar 

  83. • Briere CE, McGrath JM, Jensen T. Breast milk stem cells. Paper presented at Pediatric Academic Society Baltimora. 2016. This article summarizes the current evidence regarding breast milk derived stem cells (BMDSCs), especially in relation to different stage of lactation, expressed markers and lineages.

  84. Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A. 2002;99:10567–70. https://doi.org/10.1073/pnas.162369899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hong Y, Stambrook PJ. Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proc Natl Acad Sci U S A. 2004;101:14443–8. https://doi.org/10.1073/pnas.0401346101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. •• Briere CE, Jensen T, Young EE MGJM, Finck C. Stem-like cell characteristics from breast milk of mothers with preterm infants as compared to mothers with term infants. Breast Feed Med. 2017;12:174–9. https://doi.org/10.1089/bfm.2017.0002Study demonstrating that SCs content differs in BM from mothers delivering term and preterm neonates. Comparing samples from preterm neonates (born before than 37 weeks of GA) with full term samples, a different percentage and a variable expression of SCs ‘markers was highlighted.

    Article  Google Scholar 

  87. Walker TL, Kempermann G. One mouse, two cultures: isolation and culture of adult neural stem cells from the two neurogenic zones of individual mice. J Vis Exp. 2014;84:51225. https://doi.org/10.3791/51225.

    Article  CAS  Google Scholar 

  88. McGregor JA, Rogo LJ. Breast milk: an unappreciated source of steam cells. J Hum Lact. 2006;22:270–1. https://doi.org/10.1177/0890334406290222.

    Article  PubMed  Google Scholar 

  89. Hassiotou F, Hartmann PE. At the dawn of a new discovery: the potential of breast milk stem cells. Adv Nutr. 2014;5:770–8. https://doi.org/10.3945/an.114.006924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6:55. https://doi.org/10.1186/s13287-015-0066-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burlacu A, Grigorescu G, Rosca A, Preda MB, Simionescu M. Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro. Stem Cells Dev. 2013;22:643–53. https://doi.org/10.1089/scd.2012.0273.

    Article  CAS  PubMed  Google Scholar 

  92. Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients. 2017;9:E187. https://doi.org/10.3390/nu9030187.

    Article  CAS  PubMed  Google Scholar 

  93. González HF, Visentin S. Micronutrients and neurodevelopment: an update. Arch Argent Pediatr. 2016;114:570–5. https://doi.org/10.5546/aap.2016.eng.570.

    Article  PubMed  Google Scholar 

  94. Hernell O, Timby N, Domellöf M. Clinical benefits of milk fat globule membranes for infants and children. J Pediatr. 2016;173:60–5. https://doi.org/10.1016/j.jpeds.2016.02.077.

    Article  CAS  Google Scholar 

  95. González HF, Visentin S. Nutrients and neurodevelopment: lipids. Arch Argent Pediatr. 2016;114:472–6. https://doi.org/10.5546/aap.2016.eng.472.

    Article  PubMed  Google Scholar 

  96. Bertino E, Di Nicola P, Giuliani F, Peila C, Cester E, Vassia C, et al. Benefits of human milk in preterm infant feeding. J Pediatr Neonatal Individ Med. 2012;1:19–24. https://doi.org/10.7363/010102.

    Article  Google Scholar 

  97. Furman L, Taylor G, Minich N, Hack M. The effect of maternal milk on neonatal morbidity of very low-birth-weight infants. Arch Pediatr Adolesc Med. 2003;157:66–71.

    Article  Google Scholar 

  98. Meinzen-Deer J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF. Role of human milk in extremely low birth weight infants risk of necrotizing enterocolitis or death. J Perinatol. 2009;29:57–62. https://doi.org/10.1038/jp.2008.117.

    Article  Google Scholar 

  99. American Academy of Pediatrics. Section on breastfeeding. Breastfeeding and the use of human milk. 2012;129:827–41. https://doi.org/10.1542/peds.2011-3552.

    Article  Google Scholar 

  100. •• Jimènez BC, Parada YA, Marin AV, de Pipaon Marcos MS. Beneficios a corto, medio y largo plazo de la ingesta de leche humana en recien nacidos de muy bajo peso. Short, medium and long term benefits of human milk intake in very low birth weight infants. Nutr Hosp. 2017;34:5. https://doi.org/10.20960/nh.1014Study demonstrating a better neurodevelopmental outcome at two years and a better score in the global and verbal cognitive area at five years of age in a population of 152 very low birth weight (VLBW) neonates assuming BM since the first weeks of life.

  101. Belfort MB, Ehrenkranz RA. Neurodevelopmental outcomes and nutritional strategies in very low birth weight infants. Semin Fetal Neonatal Med. 2017;22:42–8. https://doi.org/10.1016/j.siny.2016.09.001.

    Article  PubMed  Google Scholar 

  102. Colaizy TT, Carlson S, Saftlas AF, Morriss FH Jr. Growth in VLBW infants fed predominantly fortified maternal and donor human milk diets: a retrospective cohort study. BMC Pediatr. 2012;12:124. https://doi.org/10.1186/1471-2431-12-124.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Roze JC, Darmaun D, Boquien CY, Flamant C, Picaud JC, Savagner C, et al. The apparent breastfeeding paradox in very preterm infants: relationship between breast feeding, early weight gain and neurodevelopment based on results from two cohorts. EPIPAGE and LIFT. BMJ Open. 2012;2:e000834. https://doi.org/10.1136/bmjopen-2012-000834.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Koo W, Tank S, Martin S, Shi R. Human milk and neurodevelopment in children with very low birth weight: a systematic review. Nutr J. 2014;13:94. https://doi.org/10.1186/1475-2891-13-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Higgins RD, Langer JC, et al. Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics. 2007;120:e953–9. https://doi.org/10.1542/peds.2006-3227.

    Article  PubMed  Google Scholar 

  106. Smith MM, Durkin M, Hinton VJ, Bellinger D, Kuhn L. Influence of breastfeeding on cognitive outcomes at age 6–8 years: follow-up of very low birth weight infants. Am J Epidemiol. 2003;158:1075–82.

    Article  Google Scholar 

  107. Belfort MB, Anderson PJ, Nowak V, Lee KJ, Molesworth C, Thompson DK, et al. A breast milk feeding, brain development, and neurocognitive outcomes: a 7-year longitudinal study in infants born at less than 30 weeks' gestation. J Pediatr. 2016;177:133–139e1. https://doi.org/10.1016/j.jpeds.2016.06.045.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Patra K, Hamilton M, Johnson TJ, Greene M, Dabrowski E, Meier PP, et al. NICU human milk dose and 20 month neurodevelopmental outcome in very low birth weight infants. Neonatology. 2017;112:330–6. https://doi.org/10.1159/000475834.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Perrin MT, Pawlak R, Dean LL. A cross-sectional study of fatty acids and brain derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian, and omnivore diets. Eur J Nutr. 2018;58:1–10. https://doi.org/10.1007/s00394-018-1793-z.

    Article  Google Scholar 

  110. Wang B. Molecular determinants of milk lactoferrin as a bioactive compound in early neurodevelopment and cognition. J Pediatr. 2016;173:S29–36. https://doi.org/10.1016/j.jpeds.2016.02.073.

    Article  CAS  PubMed  Google Scholar 

  111. Jacobi-Polishook T, Collins CT, Sullivan TR, Simmer K, Gillman MW, Gibson RA, et al. Human milk intake in preterm infants and neurodevelopment at 18 months corrected age. Pediatr Res. 2016;80:486–92. https://doi.org/10.1038/pr.2016.114.

    Article  CAS  PubMed  Google Scholar 

  112. Pinelli J, Saigal S, Atkinson SA. Effect of breastmilk consumption on neurodevelopmental outcomes at 6 and 12 months of age in VLBW infants. Adv Neonatal Care. 2003;3:76–87.

    Article  Google Scholar 

  113. Wang Q, Cui Q, Yan C. The effect of supplementation of long-chain polyunsaturated fatty acids during lactation on neurodevelopmental outcomes of preterm infant from infancy to school age: a systematic review and meta-analysis. Pediatr Neurol. 2016;59:54–61. https://doi.org/10.1016/j.pediatrneurol.2016.02.017.

    Article  PubMed  Google Scholar 

  114. Sammallahti S, Kajantie E, Matinolli HM. Nutrition after preterm birth and adult neurocognitive outcomes. PLoS One. 2017;12:e0185632. https://doi.org/10.1371/journal.pone.0185632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lucas A, Fewtrell MS, Morley R, Lucas PJ, Baker BA, Lister G, et al. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am J Clin Nutr. 1996;64:142–51. https://doi.org/10.1093/ajcn/64.2.142.

    Article  CAS  PubMed  Google Scholar 

  116. O’Connor DL, Jacobs J, Hall R, Adamkin D, Auestad N, Castillo M, et al. Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J Pediatr Gastroenterol Nutr. 2003;37:437–46.

    Article  Google Scholar 

  117. Wendy A. On mammary stem cells. J Cell Sci. 2005;118:3585–94. https://doi.org/10.1242/jcs.02532.

    Article  CAS  Google Scholar 

  118. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11:259–73. https://doi.org/10.1016/j.ccr.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  119. Park SY, Jeong AJ, Kim GY, Jo A, Lee JE, Leem SH, et al. Lactoferrin protects human mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. Microb Biotechnol. 2017;27:1877–84. https://doi.org/10.4014/jmb.1707.07040.

    Article  CAS  Google Scholar 

  120. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  Google Scholar 

  121. Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vasc Pharmacol. 2011;55:79–86. https://doi.org/10.1016/j.vph.2011.06.006.

    Article  CAS  Google Scholar 

  122. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45. https://doi.org/10.1038/nature03001.

    Article  CAS  Google Scholar 

  123. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17-92 family of mRNA clusters. Cell. 2008;132:875–86. https://doi.org/10.1016/j.cell.2008.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kosaka N, Izumi H, Seckine K, Ochiya T. MicroRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1:7. https://doi.org/10.1186/1758-907X-1-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012;8:118–23.

    Article  CAS  Google Scholar 

  126. Alsaweed M, Hartmann P, Geddes D, Foteini K. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health. 2015;12:13981–4020. https://doi.org/10.3390/ijerph12111398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Valadi H, Ekstrom K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs is a novel mechanism of genetic exchange between cells. Nat Cells Biol. 2007;9:654–9. https://doi.org/10.1038/ncb1596.

    Article  CAS  Google Scholar 

  128. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012;7:e43591. https://doi.org/10.1371/journal.pone.0043691.

    Article  CAS  Google Scholar 

  129. Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immun. 2007;179:1969–78. https://doi.org/10.4049/jimmunol.179.3.1969.

    Article  CAS  PubMed  Google Scholar 

  130. Piskorska-Jasiulewicz MM, Witkowska-Zimny M. Non-nutritional use of breast milk. Postepy Hig Med Dosw (Online). 2017;71:860–6. https://doi.org/10.5604/01.3001.0010.5049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VF, DGP, and FB conceptualized the structure of the review. FB provided the literature update and wrote the initial version of the manuscript. VF and DGB critically revised, modified, and approved the work. Finally, all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Flaminia Bardanzellu.

Ethics declarations

Conflict of Interest

Flaminia Bardanzellu, Diego Giampietro Peroni, and Vassilios Fanos declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardanzellu, F., Peroni, D.G. & Fanos, V. Human Breast Milk: Bioactive Components, from Stem Cells to Health Outcomes. Curr Nutr Rep 9, 1–13 (2020). https://doi.org/10.1007/s13668-020-00303-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00303-7

Keywords

Navigation