Skip to main content
Log in

Nutritional Risk Factors in the Pathogenesis of Parenteral Nutrition-Associated Liver Disease

  • Gastroenterology, Critical Care, and Lifestyle Medicine (SA McClave, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Parenteral nutrition has been a lifesaving therapy for individuals who cannot sustain adequate oral or enteral nutrient intake to maintain fluid, electrolyte, and nutrient balance. Nonetheless, parenteral nutrition can lead to an increased risk of complications, such as parenteral nutrition-associated liver disease (PNALD). The pathogenesis of PNALD has been associated with multiple risk factors, such as longer duration, reduced small bowel length, decreased enteral intake, and bacterial infections. Nutritional risk factors also play an important role in the development of PNALD. This review presents several nutrient deficiencies and excesses that have been associated with PNALD.

Recent Findings

Deficiencies in certain nutrients (amino acids, essential fatty acids, enteral intake), excesses of certain nutrients (calories, carbohydrates, lipids), types of lipid emulsions, and mineral toxicities (aluminum, copper, manganese) have been associated with PNALD. Strategies to address PNALD require correction of these risk factors. The use of newer mixed lipid emulsions (including soybean, medium-chain triglycerides, olive oil, and fish oil) may also have less hepatotoxicity than traditional soybean oil-based lipid emulsions.

Summary

Knowledge of nutritional risk factors for PNALD will help the clinician in the systematic evaluation and treatment of these specific risk factors. Moreover, an understanding of their effects guides the balance between addressing the patient’s nutritional needs and reducing the risk of PNALD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery. 1968;64(1):134–42.

    CAS  PubMed  Google Scholar 

  2. Crispin A, Thul P, Arnold D, Schild S, Weimann A. Central venous catheter complications during home parenteral nutrition: a prospective pilot study of 481 patients with more than 30,000 catheter days. Onkologie. 2008;31(11):605–9.

    Google Scholar 

  3. Dibb M, Teubner A, Theis V, Shaffer J, Lal S. Review article: the management of long-term parenteral nutrition. Aliment Pharmacol Ther. 2013;37(6):587–603.

    Article  CAS  PubMed  Google Scholar 

  4. Shike M, Harrison JE, Sturtridge WC, et al. Metabolic bone disease in patients receiving long-term total parenteral nutrition. Ann Intern Med. 1980;92(3):343–50.

    Article  CAS  PubMed  Google Scholar 

  5. Kelly DA. Intestinal failure-associated liver disease: what do we know today? Gastroenterology. 2006;130(2 Suppl 1):S70–7.

    Article  CAS  PubMed  Google Scholar 

  6. Lauriti G, Zani A, Aufieri R, et al. Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: a systematic review. JPEN J Parenter Enteral Nutr. 2014;38(1):70–85.

    Article  Google Scholar 

  7. Cavicchi M, Beau P, Crenn P, Degott C, Messing B. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann Intern Med. 2000;132(7):525–32.

    Article  CAS  Google Scholar 

  8. Luman W, Shaffer JL. Prevalence, outcome and associated factors of deranged liver function tests in patients on home parenteral nutrition. Clin Nutr. 2002;21(4):337–43.

    Article  CAS  PubMed  Google Scholar 

  9. Buchman AL, Ament ME, Sohel M, et al. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: proof of a human choline requirement: a placebo-controlled trial. JPEN J Parenter Enteral Nutr. 2001;25(5):260–8.

    Article  CAS  PubMed  Google Scholar 

  10. Fell JM, Reynolds AP, Meadows N, et al. Manganese toxicity in children receiving long-term parenteral nutrition. Lancet. 1996;347(9010):1218–21.

    Article  CAS  PubMed  Google Scholar 

  11. Peng YZ, Yuan ZQ, Xiao GX. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. Burns. 2001;27(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  12. El Kasmi KC, Anderson AL, Devereaux MW, et al. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology. 2012;55(5):1518–28.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chipponi JX, Bleier JC, Santi MT, Rudman D. Deficiencies of essential and conditionally essential nutrients. Am J Clin Nutr. 1982;35(5 Suppl):1112–6.

    CAS  PubMed  Google Scholar 

  14. Hoffer LJ. Human protein and amino acid requirements. JPEN J Parenter Enteral Nutr. 2016;40(4):460–74.

    Article  CAS  PubMed  Google Scholar 

  15. Hoffer LJ. Parenteral nutrition: amino acids. Nutrients. 2017;9(3).

  16. Lands WE. Discriminations among unsaturated fatty acids. Prog Clin Biol Res. 1988;282:11–28.

    CAS  PubMed  Google Scholar 

  17. Buchman AL, Moukarzel A, Jenden DJ, Roch M, Rice K, Ament ME. Low plasma free choline is prevalent in patients receiving long term parenteral nutrition and is associated with hepatic aminotransferase abnormalities. Clin Nutr. 1993;12(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  18. Karpati G, Carpenter S, Engel AG, et al. The syndrome of systemic carnitine deficiency. Clinical, morphologic, biochemical, and pathophysiologic features. Neurology. 1975;25(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  19. Palombo JD, Schnure F, Bistrian BR, Buchanan LM, Blackburn GL. Improvement of liver function tests by administration of L-carnitine to a carnitine-deficient patient receiving home parenteral nutrition: a case report. JPEN J Parenter Enteral Nutr. 1987;11(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  20. Buchman AL, Dubin MD, Moukarzel AA, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology. 1995;22(5):1399–403.

    CAS  PubMed  Google Scholar 

  21. Miyazaki T, Matsuzaki Y. Taurine and liver diseases: a focus on the heterogeneous protective properties of taurine. Amino Acids. 2014;46(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  22. Tanphaichitr V, Leelahagul P. Carnitine metabolism and human carnitine deficiency. Nutrition. 1993;9(3):246–54.

    CAS  PubMed  Google Scholar 

  23. Schmidt-Sommerfeld E, Werner D, Penn D. Carnitine plasma concentrations in 353 metabolically healthy children. Eur J Pediatr. 1988;147(4):356–60.

    Article  CAS  PubMed  Google Scholar 

  24. Worthley LI, Fishlock RC, Snoswell AM. Carnitine deficiency with hyperbilirubinemia, generalized skeletal muscle weakness and reactive hypoglycemia in a patient on long-term total parenteral nutrition: treatment with intravenous L-carnitine. JPEN J Parenter Enteral Nutr. 1983;7(2):176–80.

    Article  CAS  Google Scholar 

  25. Bowyer BA, Miles JM, Haymond MW, Fleming CR. L-carnitine therapy in home parenteral nutrition patients with abnormal liver tests and low plasma carnitine concentrations. Gastroenterology. 1988;94(2):434–8.

    Article  CAS  PubMed  Google Scholar 

  26. Noga AA, Zhao Y, Vance DE. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem. 2002;277(44):42,358–65.

    Article  CAS  Google Scholar 

  27. Zeisel SH. Choline: an essential nutrient for humans. Nutrition. 2000;16(7–8):669–71.

    Article  CAS  PubMed  Google Scholar 

  28. Buchman AL, Dubin M, Jenden D, et al. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology. 1992;102(4 Pt 1):1363–70.

    Article  CAS  PubMed  Google Scholar 

  29. Stapleton PP, Charles RP, Redmond HP, Bouchier-Hayes DJ. Taurine and human nutrition. Clin Nutr. 1997;16(3):103–8.

    Article  CAS  PubMed  Google Scholar 

  30. Sardesai VM. The essential fatty acids. Nutr Clin Pract. 1992;7(4):179–86.

    Article  CAS  PubMed  Google Scholar 

  31. Burr GO, Burr MM. Nutrition classics from the Journal of Biological Chemistry 82:345-67, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet. Nutr Rev. 1973;31(8):248–9.

    CAS  PubMed  Google Scholar 

  32. Oshita M, Takehara H, Yamaguchi M, et al. Significance of administration of fat emulsion: hepatic changes in infant rats receiving total parenteral nutrition with and without fat. Clin Nutr. 2004;23(5):1060–8.

    Article  CAS  Google Scholar 

  33. Fukazawa T, Privett OS, Takahashi Y. Effect of EFA deficiency on lipid transport from liver. Lipids. 1971;6(6):388–93.

    Article  CAS  PubMed  Google Scholar 

  34. Huang MT, Williams MA. Essential fatty acid deficiency and plasma triglyceride turnover in rats. Am J Phys. 1980;238(5):E499–505.

    CAS  Google Scholar 

  35. Williams MA, Tinoco J, Yang YT, Bird MI, Hincenbergs I. Feeding pure docosahexaenoate or arachidonate decreases plasma triacylglycerol secretion in rats. Lipids. 1989;24(9):753–8.

    Article  CAS  PubMed  Google Scholar 

  36. Levy E, Thibault L, Garofalo C, et al. Combined (n-3 and n-6) essential fatty deficiency is a potent modulator of plasma lipids, lipoprotein composition, and lipolytic enzymes. J Lipid Res. 1990;31(11):2009–17.

    CAS  PubMed  Google Scholar 

  37. Nilsson A, Hjelte L, Nilsson-Ehle P, Strandvik B. Adaptive regulation of lipoprotein lipase and salt-resistant lipase activities in essential fatty acid deficiency: an experimental study in the rat. Metabolism. 1990;39(12):1305–8.

    Article  CAS  PubMed  Google Scholar 

  38. Holman RT. The ratio of trienoic: tetraenoic acids in tissue lipids as a measure of essential fatty acid requirement. J Nutr. 1960;70:405–10.

    CAS  PubMed  Google Scholar 

  39. Holman RT, Smythe L, Johnson S. Effect of sex and age on fatty acid composition of human serum lipids. Am J Clin Nutr. 1979;32(12):2390–9.

    CAS  PubMed  Google Scholar 

  40. Bistrian BR. Clinical aspects of essential fatty acid metabolism: Jonathan Rhoads Lecture. JPEN J Parenter Enteral Nutr. 2003;27(3):168–75.

    Article  CAS  PubMed  Google Scholar 

  41. Press M, Hartop PJ, Prottey C. Correction of essential fatty-acid deficiency in man by the cutaneous application of sunflower-seed oil. Lancet. 1974;1(7858):597–8.

    Article  CAS  PubMed  Google Scholar 

  42. Friedman Z, Shochat SJ, Maisels MJ, Marks KH, Lamberth EL Jr. Correction of essential fatty acid deficiency in newborn infants by cutaneous application of sunflower-seed oil. Pediatrics. 1976;58(5):650–4.

    CAS  PubMed  Google Scholar 

  43. Miller DG, Williams SK, Palombo JD, Griffin RE, Bistrian BR, Blackburn GL. Cutaneous application of safflower oil in preventing essential fatty acid deficiency in patients on home parenteral nutrition. Am J Clin Nutr. 1987;46(3):419–23.

    CAS  PubMed  Google Scholar 

  44. Touloukian RJ, Seashore JH. Hepatic secretory obstruction with total parenteral nutrition in the infant. J Pediatr Surg. 1975;10(3):353–60.

    Article  CAS  PubMed  Google Scholar 

  45. Slagle TA, Gross SJ. Effect of early low-volume enteral substrate on subsequent feeding tolerance in very low birth weight infants. J Pediatr. 1988;113(3):526–31.

    Article  CAS  PubMed  Google Scholar 

  46. Rangel SJ, Calkins CM, Cowles RA, et al. Parenteral nutrition-associated cholestasis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg. 2012;47(1):225–40.

    Article  PubMed  Google Scholar 

  47. Greenberg GR, Wolman SL, Christofides ND, Bloom SR, Jeejeebhoy KN. Effect of total parenteral nutrition on gut hormone release in humans. Gastroenterology. 1981;80(5 pt 1):988–93.

    CAS  PubMed  Google Scholar 

  48. Lucas A, Bloom SR, Aynsley-Green A. Metabolic and endocrine consequences of depriving preterm infants of enteral nutrition. Acta Paediatr Scand. 1983;72(2):245–9.

    Article  CAS  PubMed  Google Scholar 

  49. Jawaheer G, Pierro A, Lloyd DA, Shaw NJ. Gall bladder contractility in neonates: effects of parenteral and enteral feeding. Arch Dis Child Fetal Neonatal Ed. 1995;72(3):F200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fedorowski T, Salen G, Tint GS, Mosbach E. Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria. Gastroenterology. 1979;77(5):1068–73.

    CAS  Google Scholar 

  51. Miyai K, Price VM, Fisher MM. Bile acid metabolism in mammals. Ultrastructural studies on the intrahepatic cholestasis induced by lithocholic and chenodeoxycholic acids in the rat. Lab Investig. 1971;24(4):292–302.

    CAS  Google Scholar 

  52. Hoang V, Sills J, Chandler M, Busalani E, Clifton-Koeppel R, Modanlou HD. Percutaneously inserted central catheter for total parenteral nutrition in neonates: complications rates related to upper versus lower extremity insertion. Pediatrics. 2008;121(5):e1152–9.

    Article  Google Scholar 

  53. Capron JP, Gineston JL, Herve MA, Braillon A. Metronidazole in prevention of cholestasis associated with total parenteral nutrition. Lancet. 1983;1(8322):446–7.

    Article  CAS  PubMed  Google Scholar 

  54. Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology. 2016;150(8):1769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meguid MM, Chen TY, Yang ZJ, Campos AC, Hitch DC, Gleason JR. Effects of continuous graded total parenteral nutrition on feeding indexes and metabolic concomitants in rats. Am J Phys. 1991;260(1 Pt 1):E126–40.

    CAS  Google Scholar 

  56. Nussbaum MS, Li S, Bower RH, McFadden DW, Dayal R, Fischer JE. Addition of lipid to total parenteral nutrition prevents hepatic steatosis in rats by lowering the portal venous insulin/glucagon ratio. JPEN J Parenter Enteral Nutr. 1992;16(2):106–9.

    Article  CAS  PubMed  Google Scholar 

  57. Girard J, Perdereau D, Foufelle F, Prip-Buus C, Ferre P. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 1994;8(1):36–42.

    CAS  PubMed  Google Scholar 

  58. Crill CM, Gura KM. Parenteral Nutrition. In: Corkins M, ed. The A.S.P.E.N. Pediatric Nutrition Support Core Curriculum. Silver Spring, MD: American Society for Parenteral and Enteral Nutrition; 2015:596.

  59. • Ayers P, Holcomb B, Plogsted S, Guenter P. A.S.P.E.N. Parenteral Nutrition Handbook. 2nd ed: American Society for Parenteral and Enteral Nutrition; 2014. Comprehensive guidance on the prescription and use of parenteral nutrition.

  60. Antebi H, Mansoor O, Ferrier C, et al. Liver function and plasma antioxidant status in intensive care unit patients requiring total parenteral nutrition: comparison of 2 fat emulsions. JPEN J Parenter Enteral Nutr. 2004;28(3):142–8.

    Article  CAS  PubMed  Google Scholar 

  61. • Klek S, Chambrier C, Singer P, et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid)—a double-blind, randomised, multicentre study in adults. Clin Nutr. 2013;32(2):224–31. Randomized trial demonstrating the safety and improvement in fatty acid profile with use of the recently FDA-approved mixed lipids (soybean oil, medium-chain triglycerides, olive oil, fish oil) emulsion.

    Article  CAS  PubMed  Google Scholar 

  62. Puder M, Valim C, Meisel JA, et al. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann Surg. 2009;250(3):395–402.

    PubMed  PubMed Central  Google Scholar 

  63. Gura KM, Duggan CP, Collier SB, et al. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: implications for future management. Pediatrics. 2006;118(1):e197–201.

    Article  PubMed  Google Scholar 

  64. • Nandivada P, Chang MI, Potemkin AK, et al. The natural history of cirrhosis from parenteral nutrition-associated liver disease after resolution of cholestasis with parenteral fish oil therapy. Ann Surg. 2015;261(1):172–9. Prospective study that evaluated the response of PNALD to fish oil-based lipid emulsion.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Strang BJ, Reddix BA, Wolk RA. Improvement in parenteral nutrition-associated cholestasis with the use of Omegaven in an infant with short bowel syndrome. Nutr Clin Pract. 2016;31(5):647–53.

    Article  PubMed  Google Scholar 

  66. Park HW, Lee NM, Kim JH, Kim KS, Kim SN. Parenteral fish oil-containing lipid emulsions may reverse parenteral nutrition-associated cholestasis in neonates: a systematic review and meta-analysis. J Nutr. 2015;145(2):277–83.

    Article  PubMed  Google Scholar 

  67. Vanek VW, Seidner DL, Allen P, et al. Update to A.S.P.E.N. position paper: clinical role for alternative intravenous fat emulsions. Nutr Clin Pract. 2014;29(6):841.

    Article  PubMed  Google Scholar 

  68. Clayton PT, Whitfield P, Iyer K. The role of phytosterols in the pathogenesis of liver complications of pediatric parenteral nutrition. Nutrition. 1998;14(1):158–64.

    Article  CAS  PubMed  Google Scholar 

  69. Llop JM, Virgili N, Moreno-Villares JM, et al. Phytosterolemia in parenteral nutrition patients: implications for liver disease development. Nutrition. 2008;24(11–12):1145–52.

    Article  CAS  PubMed  Google Scholar 

  70. Carter BA, Taylor OA, Prendergast DR, et al. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res. 2007;62(3):301–6.

    Article  CAS  PubMed  Google Scholar 

  71. Cober MP, Killu G, Brattain A, Welch KB, Kunisaki SM, Teitelbaum DH. Intravenous fat emulsions reduction for patients with parenteral nutrition-associated liver disease. J Pediatr. 2012;160(3):421–7.

    Article  CAS  Google Scholar 

  72. Sanchez SE, Braun LP, Mercer LD, Sherrill M, Stevens J, Javid PJ. The effect of lipid restriction on the prevention of parenteral nutrition-associated cholestasis in surgical infants. J Pediatr Surg. 2013;48(3):573–8.

    Article  PubMed  Google Scholar 

  73. Pluhator-Murton MM, Fedorak RN, Audette RJ, Marriage BJ, Yatscoff RW, Gramlich LM. Trace element contamination of total parenteral nutrition. 1. Contribution of component solutions. JPEN J Parenter Enteral Nutr. 1999;23(4):222–7.

    Article  CAS  PubMed  Google Scholar 

  74. Bohrer D, do Nascimento PC, Binotto R, Becker E, Pomblum S. Contribution of the raw material to the aluminum contamination in parenterals. JPEN J Parenter Enteral Nutr. 2002;26(6):382–8.

    Article  CAS  PubMed  Google Scholar 

  75. Hernandez-Sanchez A, Tejada-Gonzalez P, Arteta-Jimenez M. Aluminium in parenteral nutrition: a systematic review. Eur J Clin Nutr. 2013;67(3):230–8.

    Article  CAS  PubMed  Google Scholar 

  76. Arnold CJ, Miller GG, Zello GA. Parenteral nutrition-associated cholestasis in neonates: the role of aluminum. Nutr Rev. 2003;61(9):306–10.

    Article  PubMed  Google Scholar 

  77. Alemmari A, Miller GG, Arnold CJ, Zello GA. Parenteral aluminum induces liver injury in a newborn piglet model. J Pediatr Surg. 2011;46(5):883–7.

    Article  PubMed  Google Scholar 

  78. Alemmari A, Miller GG, Bertolo RF, et al. Reduced aluminum contamination decreases parenteral nutrition associated liver injury. J Pediatr Surg. 2012;47(5):889–94.

    Article  PubMed  Google Scholar 

  79. Klein GL. Aluminum contamination of parenteral nutrition solutions and its impact on the pediatric patient. Nutr Clin Pract. 2003;18(4):302–7.

    Article  Google Scholar 

  80. Bishop NJ, Morley R, Day JP, Lucas A. Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. N Engl J Med. 1997;336(22):1557–61.

    Article  CAS  PubMed  Google Scholar 

  81. Cope-Yokoyama S, Finegold MJ, Sturniolo GC, et al. Wilson disease: histopathological correlations with treatment on follow-up liver biopsies. World J Gastroenterol. 2010;16(12):1487–94.

    Article  CAS  PubMed Central  Google Scholar 

  82. Fessler TA. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients. Nutr Clin Pract. 2013;28(6):722–9.

    Article  PubMed  Google Scholar 

  83. Spiegel JE, Willenbucher RF. Rapid development of severe copper deficiency in a patient with Crohn’s disease receiving parenteral nutrition. JPEN J Parenter Enteral Nutr. 1999;23(3):169–72.

    Article  CAS  Google Scholar 

  84. Fuhrman MP, Herrmann V, Masidonski P, Eby C. Pancytopenia after removal of copper from total parenteral nutrition. JPEN J Parenter Enteral Nutr. 2000;24(6):361–6.

    Article  CAS  PubMed  Google Scholar 

  85. Medici V. The evolving scenario of copper and fatty liver. Metab Syndr Relat Disord. 2013;11(1):4–6.

    Article  CAS  Google Scholar 

  86. Papavasiliou PS, Miller ST, Cotzias GC. Role of liver in regulating distribution and excretion of manganese. Am J Phys. 1966;211(1):211–6.

    CAS  Google Scholar 

  87. Bertinchamps AJ, Miller ST, Cotzias GC. Interdependence of routes excreting manganese. Am J Phys. 1966;211(1):217–24.

    CAS  Google Scholar 

  88. Hauser RA, Zesiewicz TA, Rosemurgy AS, Martinez C, Olanow CW. Manganese intoxication and chronic liver failure. Ann Neurol. 1994;36(6):871–5.

    Article  CAS  PubMed  Google Scholar 

  89. Kelly DA. Liver complications of pediatric parenteral nutrition—epidemiology. Nutrition. 1998;14(1):153–7.

    Article  CAS  PubMed  Google Scholar 

  90. Baker B, Ali A, Isenring L. Recommendations for manganese supplementation to adult patients receiving long-term home parenteral nutrition: an analysis of the supporting evidence. Nutr Clin Pract. 2016;31(2):180–5.

    Article  CAS  PubMed  Google Scholar 

  91. Vanek VW, Borum P, Buchman A, et al. A.S.P.E.N. position paper: recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr Clin Pract. 2012;27(4):440–91.

    Article  PubMed  Google Scholar 

  92. Huston RK, Heisel CF, Vermillion BR, Christensen JM, Minc L. Aluminum content of neonatal parenteral nutrition solutions. Nutr Clin Pract. 2017;32(2):266–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berkeley N. Limketkai.

Ethics declarations

Conflict of Interest

Berkeley N. Limketkai, Monica Choe, Shruti Patel, Neha D. Shah, and Valentina Medici declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gastroenterology, Critical Care, and Lifestyle Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limketkai, B.N., Choe, M., Patel, S. et al. Nutritional Risk Factors in the Pathogenesis of Parenteral Nutrition-Associated Liver Disease. Curr Nutr Rep 6, 281–290 (2017). https://doi.org/10.1007/s13668-017-0217-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-017-0217-7

Keywords

Navigation