Skip to main content

Advertisement

Log in

The Safety of Arginine in the Critically Ill Patient: What Does the Current Literature Show?

  • Gastroenterology and Nutrition (SA McClave, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Arginine, a semi-essential amino acid, is found to decrease under several conditions of critical illness, either due to decreased intake, mucosal absorption or de novo synthesis, and/or concomitantly increased demand. Under stressful situations, several metabolic, inflammatory, and immunological pathways are also triggered, impacting how nutrients may be utilized. In particular, arginine may be degraded by arginase or nitric oxide synthase, leading to different end products which per se influence the patient’s hemodynamic status and response to pathogens. Furthermore, the critically ill patient undergoes a variety of insults that may be marked solely by a physiological response to trauma (e.g., the major gastrointestinal surgical patient) or a more complicated scenario marked by severe sepsis. Nonetheless, several animal and clinical studies have addressed the various critically ill conditions and concluded that supplemental arginine appears safe and potentially beneficial. Several questions still need to be addressed regarding optimal dosing and timing of delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heyland D, Dhaliwal R. Immunonutrition in the critically ill: from old approaches to new paradigms. Intensive Care Med. 2005;31:501–3.

    Article  PubMed  Google Scholar 

  2. Heyland DK. Immunonutrition in the critically ill patient: putting the cart before the horse? Nutr Clin Pract. 2002;17:267–72.

    Article  PubMed  Google Scholar 

  3. Heyland DK, Drover J. Does immunonutrition make an impact? It depends on the analysis. Crit Care Med. 2000;28:906–7.

    Article  CAS  PubMed  Google Scholar 

  4. Heyland DK, Samis A. Does immunonutrition in patients with sepsis do more harm than good? Intensive Care Med. 2003;29:669–71.

    PubMed  Google Scholar 

  5. Kreymann KG, Berger MM, Detuz NE, Hiesmayr M, Joliet P, et al. ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–23.

    Article  CAS  PubMed  Google Scholar 

  6. Luiking YC, Poeze M, Deutz NE. Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability. Clin Sci (Lond). 2015;128:57–67. Important clinical study carried out in septic patients addressing arginine safety, despite shock.

    Article  CAS  Google Scholar 

  7. Luiking YC, Poeze M, Ramsay G, Deutz NE. The role of arginine in infection and sepsis. JPEN J Parenter Enteral Nutr. 2005;29(1 Suppl):S70–4.

    Article  CAS  PubMed  Google Scholar 

  8. Luiking YC, Poeze M, Ramsay G, Deutz NE. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89:142–52.

    Article  CAS  PubMed  Google Scholar 

  9. Preiser JC, Luiking Y, Deutz N. Arginine and sepsis: a question of the right balance? Crit Care Med. 2011;39:1569–70.

    Article  PubMed  Google Scholar 

  10. Brito PA, de Vasconcelos Generoso S, Correia MI. Prevalence of pressure ulcers in hospitals in Brazil and association with nutritional status—a multicenter, cross-sectional study. Nutrition. 2013;29:646–9.

    Article  PubMed  Google Scholar 

  11. Correia MI, Campos AC, Study EC. Prevalence of hospital malnutrition in Latin America: the multicenter ELAN study. Nutrition. 2003;19:823–5.

    Article  PubMed  Google Scholar 

  12. Ferreira LG, Anastacio LR, Lima AS, Correia MI. Assessment of nutritional status of patients waiting for liver transplantation. Clin Transplant. 2011;25:248–54.

    Article  PubMed  Google Scholar 

  13. Fontes D, Generoso Sde V, Toulson Davisson Correia MI. Subjective global assessment: a reliable nutritional assessment tool to predict outcomes in critically ill patients. Clin Nutr. 2014;33:291–5.

    Article  PubMed  Google Scholar 

  14. Waitzberg DL, Correia MI. Nutritional assessment in the hospitalized patient. Curr Opin Clin Nutr Metab Care. 2003;6:531–8.

    Article  PubMed  Google Scholar 

  15. Correia MI, Waitzberg DL. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr. 2003;22:235–9.

    Article  PubMed  Google Scholar 

  16. Wijnands KA, Castermans TM, Hommen MP, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients. 2015;7:1426–63. A very good review article that encompasses the arginine-citrulline pathway and the sepsis status.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Osowska S, Neveux N, Nakib S, Lasserre V, Cynober L, et al. Impairment of arginine metabolism in rats after massive intestinal resection: effect of parenteral nutrition supplemented with citrulline compared with arginine. Clin Sci (Lond). 2008;115:159–66.

    Article  CAS  Google Scholar 

  18. Badurdeen S, Mulongo M, Berkley JA. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr Res. 2015;77:290–7. In this study, the authors have addressed that arginine depletion is directly associated with increased sepsis in neonates.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Barbul A, Uliyargoli A. Use of exogenous arginine in multiple organ dysfunction syndrome and sepsis. Crit Care Med. 2007;35(9 Suppl):S564–7.

    Article  CAS  PubMed  Google Scholar 

  20. Wu G, Bazer FW, Davis TA, Kim SW, Li P, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37:153–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Morris Jr SM. Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol. 2009;157:922–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Morris Jr SM. Arginine: master and commander in innate immune responses. Sci Signal. 2010;3:pe27.

    Article  PubMed  Google Scholar 

  23. Cohen J, Chin D. Nutrition and sepsis. World Rev Nutr Diet. 2013;105:116–25.

    Article  PubMed  Google Scholar 

  24. Genton L, Pichard C. Protein catabolism and requirements in severe illness. Int J Vitam Nutr Res. 2011;81:143–52.

    Article  CAS  PubMed  Google Scholar 

  25. Gough MS, Morgan MA, Mack CM, Darling DC, Frasier LM, et al. The ratio of arginine to dimethylarginines is reduced and predicts outcomes in patients with severe sepsis. Crit Care Med. 2011;39:1351–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hirose T, Shimizu K, Ogura H, Tasaki O, Hamasaki T, et al. Altered balance of the aminogram in patients with sepsis—the relation to mortality. Clin Nutr. 2014;33:179–82. Another important clinical study with septic patients and the decreased plasma levels of certain amino acids, including arginine.

    Article  CAS  PubMed  Google Scholar 

  27. Koch A, Weiskirchen R, Bruensing J, Duckers H, Buendgens L, et al. Regulation and prognostic relevance of symmetric dimethylarginine serum concentrations in critical illness and sepsis. Mediators Inflamm. 2013;2013:413826. This paper points out the relevant of ADMA and critical illness.

    PubMed Central  PubMed  Google Scholar 

  28. Kalil AC. Is it time to replace L-arginine in severe sepsis? Crit Care Med. 2011;39:417–8.

    Article  PubMed  Google Scholar 

  29. Ruth MR, Field CJ. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol. 2013;4:27.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Brinkmann SJ, de Boer MC, Buijs N, Van Leeuwen PA. Asymmetric dimethylarginine and critical illness. Curr Opin Clin Nutr Metab Care. 2014;17:90–7.

    CAS  PubMed  Google Scholar 

  31. Koch A, Weiskirchen R, Kunze J, Duckers H, Bruensing J, et al. Elevated asymmetric dimethylarginine levels predict short- and long-term mortality risk in critically ill patients. J Crit Care. 2013;28:947–53. Another clinical study showing the relevance of ADMA and mortality in critically ill patients.

    Article  CAS  PubMed  Google Scholar 

  32. Awad S, Lobo DN. Metabolic conditioning to attenuate the adverse effects of perioperative fasting and improve patient outcomes. Curr Opin Clin Nutr Metab Care. 2012;15:194–200.

    Article  CAS  PubMed  Google Scholar 

  33. Abraham N, Albayati S. Enhanced recovery after surgery programs hasten recovery after colorectal resections. World J Gastrointest Surg. 2011;3:1–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ahmed J, Khan S, Lim M, Chandrasekaran RV, MacFie J. Enhanced recovery after surgery protocols—compliance and variations in practice during routine colorectal surgery. Colorectal Dis. 2012;14:1045–51.

    Article  CAS  PubMed  Google Scholar 

  35. Gustafsson UO, Hausel J, Thorell A, Ljungqvuist O, Soop M, et al. Adherence to the enhanced recovery after surgery protocol and outcomes after colorectal cancer surgery. Arch Surg. 2011;146:571–7.

    Article  PubMed  Google Scholar 

  36. Huibers CJ, de Roos MA, Ong KH. The effect of the introduction of the ERAS protocol in laparoscopic total mesorectal excision for rectal cancer. Int J Colorectal Dis. 2012;27:751–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lassen K, Coolsen MM, Slim K, Carli F, de Aguilar-Nascimento JE, et al. Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. World J Surg. 2013;37:240–58.

    Article  PubMed  Google Scholar 

  38. Batista MA, Nicoli JR, Marins Fdos S, Machado JA, Arantes RM, et al. Pretreatment with citrulline improves gut barrier after intestinal obstruction in mice. JPEN J Parenter Enteral Nutr. 2012;36:69–76.

    Article  CAS  PubMed  Google Scholar 

  39. dos Santos R, Viana ML, Generoso SV, Arantes RE, Davisson Corriea MI, et al. Glutamine supplementation decreases intestinal permeability and preserves gut mucosa integrity in an experimental mouse model. JPEN J Parenter Enteral Nutr. 2010;34:408–13.

    Article  PubMed  Google Scholar 

  40. Quirino IE et al. The role of L-arginine and inducible nitric oxide synthase in intestinal permeability and bacterial translocation. JPEN J Parenter Enteral Nutr. 2013;37(3):392–400.

    Article  PubMed  Google Scholar 

  41. Quirino IE, Cardoso VN, Santos RD, Evangelista WP, Arantes RM, et al. Arginine supplementation induces arginase activity and inhibits TNF-alpha synthesis in mice spleen macrophages after intestinal obstruction. JPEN J Parenter Enteral Nutr. 2014. doi:10.1177/0148607114546374.

  42. Quirino IE, Correia MI, Cardoso VN. The impact of arginine on bacterial translocation in an intestinal obstruction model in rats. Clin Nutr. 2007;26:335–40.

    Article  CAS  PubMed  Google Scholar 

  43. Viana ML, Dos Santos RD, Generoso Sde V, Nicoli JR, Martins Fdos S, et al. The role of L-arginine-nitric oxide pathway in bacterial translocation. Amino Acids. 2013;45:1089–96.

    Article  CAS  PubMed  Google Scholar 

  44. Viana ML, Santos RG, Generoso SV, Arantes RM, Correia MI, et al. Pretreatment with arginine preserves intestinal barrier integrity and reduces bacterial translocation in mice. Nutrition. 2010;26:218–23.

    Article  CAS  PubMed  Google Scholar 

  45. Heyland DK, Dhaliwal R, Day AG, Muscedere J, Drover J, et al. REducing Deaths due to OXidative Stress (The REDOXS Study): rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients. Proc Nutr Soc. 2006;65:50–63.

    Article  Google Scholar 

  46. Geurden B, Franck Mpsych E, Lopez Hartmann M, Weyler J, Ysebaertet D. Prevalence of ‘being at risk of malnutrition’ and associated factors in adult patients receiving nursing care at home in Belgium. Int J Nurs Pract. 2014. doi:10.1111/ijn.12341.

  47. Zhou M, Martindale RG. Immune-modulating enteral formulations: optimum components, appropriate patients, and controversial use of arginine in sepsis. Curr Gastroenterol Rep. 2007;9:329–37.

    Article  PubMed  Google Scholar 

  48. Iapichino G, Albicini M, Umbrello M, Sacconi F, Fermo I, et al. Tight glycemic control does not affect asymmetric-dimethylarginine in septic patients. Intensive Care Med. 2008;34:1843–50.

    Article  PubMed  Google Scholar 

  49. Zoccali C, Maas R, Cutrupi S, Pizzini P, Finocchiaro P, et al. Asymmetric dimethyl-arginine (ADMA) response to inflammation in acute infections. Nephrol Dial Transplant. 2007;22:801–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kao CC, Bandi V, Guntupalli KK, Wu M, Castillo L, et al. Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci (Lond). 2009;117:23–30.

    Article  CAS  Google Scholar 

  51. Boger RH. The pharmacodynamics of L-arginine. J Nutr. 2007;137(6 Suppl 2):1650S–5S.

    PubMed  Google Scholar 

  52. Cahill NE, Narasimhan S, Dhaliwal R, Heyland DK. Attitudes and beliefs related to the Canadian critical care nutrition practice guidelines: an international survey of critical care physicians and dietitians. JPEN J Parenter Enteral Nutr. 2010;34:685–96.

    Article  PubMed  Google Scholar 

  53. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P, et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27:55–73.

    Google Scholar 

  54. Zhou M, Martindale RG. Arginine in the critical care setting. J Nutr. 2007;137(6 Suppl 2):1687S–92S.

    CAS  PubMed  Google Scholar 

  55. Wangpaichitr M, Wu C, Bigford G, Theodoropoulos G, You M, et al. Combination of arginine deprivation with TRAIL treatment as a targeted-therapy for mesothelioma. Anticancer Res. 2014;34:6991–9.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Maria Isabel Toulson Davisson Correia has received compensation from Abbott Nutrition, Nestlé Nutrition, Baxter Nutrition and Fresenius Kabi for service as a consultant and advisory board.

Robert G. Martindale has received compensation from Metagenics, Nestlé, and Abbott Laboratories for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Toulson Davisson Correia.

Additional information

This article is part of the Topical Collection on Gastroenterology and Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, M.I.T.D., Martindale, R.G. The Safety of Arginine in the Critically Ill Patient: What Does the Current Literature Show?. Curr Nutr Rep 4, 230–235 (2015). https://doi.org/10.1007/s13668-015-0134-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0134-6

Keywords

Navigation