Skip to main content
Log in

Gene–Diet Interaction on Body Weight Maintenance

  • Genetics (GVZ Dedoussis, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Obesity has become a major public health problem. Compelling evidence indicates that obesity is largely driven by both genetic predisposition and dramatic changes. Research on the gene–diet interaction has facilitated the choice for individualized diet suggestions to counteract the adverse effect of a risk allele in weight loss. However, preliminary results concerning gene–diet interaction for established loci on body weight maintenance are mostly inconsistent. In the present study, we reviewed studies concerning gene–diet interaction on weight loss or weight regain published during the past 10 years, including cohort studies and clinical trials. Although discrepancy exists, results from nutritional genetic studies based on genetic risk score for obesity provided plausible evidences for gene–diet interaction on body weight maintenance. Future studies with large sample size are needed to overcome the adverse effect of weakened statistical power induced by imprecise measurement of environment factor, and thus identify strong gene–diet interaction on body weight maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Eckel RH. Obesity and heart disease: a statement for healthcare professionals from the Nutrition Committee. Am Heart Assoc Circ. 1997;96(9):3248–50.

    CAS  Google Scholar 

  2. Allison DB, Kaprio J, Korkeila M, Koskenvuo M, Neale MC, Hayakawa K. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes Relat Metab Disord. 1996;20(6):501–6.

    CAS  PubMed  Google Scholar 

  3. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Choquet H, Meyre D. Molecular basis of obesity: current status and future prospects. Curr Genomics. 2011;12(3):154–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005;82(1):41–8.

    CAS  PubMed  Google Scholar 

  6. Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab. 2003;88(4):1617–23.

    Article  CAS  PubMed  Google Scholar 

  7. Toubro S, Astrup A. Randomised comparison of diets for maintaining obese subjects’ weight after major weight loss: ad lib, low fat, high carbohydrate diet v fixed energy intake. BMJ. 1997;314(7073):29–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Razquin C, Martinez JA, Martinez-Gonzalez MA, Mitjavila MT, Estruch R, Marti A. A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur J Clin Nutr. 2009;63(12):1387–93.

    Article  CAS  PubMed  Google Scholar 

  9. de Luis DA, Aller R, Conde R, Izaola O, Gonzalez Sagrado M, Castrodeza SJ. The rs9939609 gene variant in FTO modified the metabolic response of weight loss after a 3-month intervention with a hypocaloric diet. J Investig Med. 2013;61(1):22–6.

    PubMed  Google Scholar 

  10. Razquin C, Martinez JA, Martinez-Gonzalez MA, Bes-Rastrollo M, Fernandez-Crehuet J, Marti A. A 3-year intervention with a Mediterranean diet modified the association between the rs9939609 gene variant in FTO and body weight changes. Int J Obes. 2010;34(2):266–72.

    Article  CAS  Google Scholar 

  11. Grau K, Hansen T, Holst C, Astrup A, Saris WH, Arner P, et al. Macronutrient-specific effect of FTO rs9939609 in response to a 10-week randomized hypo-energetic diet among obese Europeans. Int J Obes. 2009;33(11):1227–34.

    Article  CAS  Google Scholar 

  12. Huang T, Qi Q, Li Y, Hu FB, Bray GA, Sacks FM, et al. FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial. Am J Clin Nutr. 2014;99(5):1126–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Matsuo T, Nakata Y, Murotake Y, Hotta K, Tanaka K. Effects of FTO genotype on weight loss and metabolic risk factors in response to calorie restriction among Japanese women. Obesity. 2012;20(5):1122–6.

    Article  CAS  PubMed  Google Scholar 

  14. Rauhio A, Uusi-Rasi K, Nikkari ST, Kannus P, Sievanen H, Kunnas T. Association of the FTO and ADRB2 genes with body composition and fat distribution in obese women. Maturitas. 2013;76(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  15. Zlatohlavek L, Vrablik M, Motykova E, Ceska R, Vasickova L, Dlouha D, et al. FTO and MC4R gene variants determine BMI changes in children after intensive lifestyle intervention. Clin Biochem. 2013;46(4–5):313–6.

    Article  CAS  PubMed  Google Scholar 

  16. Cinti S. The role of brown adipose tissue in human obesity. Nutr Metab Cardiovasc Dis. 2006;16(8):569–74.

    Article  PubMed  Google Scholar 

  17. Kim JY, Lee SS. The effects of uncoupling protein 1 and beta3-adrenergic receptor gene polymorphisms on weight loss and lipid profiles in obese women. Int J Vitam Nutr Res. 2010;80(2):87–96.

    Article  CAS  PubMed  Google Scholar 

  18. Nagai N, Sakane N, Kotani K, Hamada T, Tsuzaki K, Moritani T. Uncoupling protein 1 gene −3826 A/G polymorphism is associated with weight loss on a short-term, controlled-energy diet in young women. Nutr Res. 2011;31(4):255–61.

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz JR, Larrarte E, Margareto J, Ares R, Labayen I. Role of beta(2)-adrenergic receptor polymorphisms on body weight and body composition response to energy restriction in obese women: preliminary results. Obesity. 2011;19(1):212–5.

    Article  CAS  PubMed  Google Scholar 

  20. Salopuro T, Pulkkinen L, Lindstrom J, Kolehmainen M, Tolppanen AM, Eriksson JG, et al. Variation in the UCP2 and UCP3 genes associates with abdominal obesity and serum lipids: the Finnish Diabetes Prevention Study. BMC Med Genet. 2009;10(94):1471–2350.

    Google Scholar 

  21. Corella D, Qi L, Sorli JV, Godoy D, Portoles O, Coltell O, et al. Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction. J Clin Endocrinol Metab. 2005;90(9):5121–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ruiz JR, Larrarte E, Margareto J, Ares R, Alkorta P, Labayen I. Preliminary findings on the role of PLIN1 polymorphisms on body composition and energy metabolism response to energy restriction in obese women. Br J Nutr. 2011;106(4):486–90.

    Article  CAS  PubMed  Google Scholar 

  23. Salopuro T, Pulkkinen L, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, et al. Genetic variation in leptin receptor gene is associated with type 2 diabetes and body weight: The Finnish Diabetes Prevention Study. Int J Obes. 2005;29(10):1245–51.

    Article  CAS  Google Scholar 

  24. Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord. 2003;27(8):875–88.

    Article  CAS  PubMed  Google Scholar 

  25. Abete I, Goyenechea E, Crujeiras AB, Martinez JA. Inflammatory state and stress condition in weight-lowering Lys109Arg LEPR gene polymorphism carriers. Arch Med Res. 2009;40(4):306–10.

    Article  CAS  PubMed  Google Scholar 

  26. Qi Q, Bray GA, Hu FB, Sacks FM, Qi L. Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: the Preventing Overweight Using Novel Dietary Strategies trial. Am J Clin Nutr. 2012;95(2):506–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ugi S, Nishio Y, Yamamoto H, Ikeda K, Kobayashi M, Tsukada S, et al. Relation of the expression of transcriptional factor TFAP2B to that of adipokines in subcutaneous and omental adipose tissues. Obesity. 2010;18(7):1277–82.

    Article  CAS  PubMed  Google Scholar 

  28. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L, et al. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet. 2009;5(6):e1000508.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Stocks T, Angquist L, Hager J, Charon C, Holst C, Martinez JA, et al. TFAP2B -dietary protein and glycemic index interactions and weight maintenance after weight loss in the DiOGenes trial. Hum Hered. 2013;75(2–4):213–9.

    Article  CAS  PubMed  Google Scholar 

  30. Erez G, Tirosh A, Rudich A, Meiner V, Schwarzfuchs D, Sharon N, et al. Phenotypic and genetic variation in leptin as determinants of weight regain. Int J Obes. 2011;35(6):785–92.

    Article  CAS  Google Scholar 

  31. Larsen LH, Angquist L, Vimaleswaran KS, Hager J, Viguerie N, Loos RJ, et al. Analyses of single nucleotide polymorphisms in selected nutrient-sensitive genes in weight-regain prevention: the DIOGENES study. Am J Clin Nutr. 2012;95(5):1254–60.

    Article  CAS  PubMed  Google Scholar 

  32. Goyenechea E, Dolores Parra M, Alfredo MJ. Weight regain after slimming induced by an energy-restricted diet depends on interleukin-6 and peroxisome-proliferator-activated-receptor-gamma2 gene polymorphisms. Br J Nutr. 2006;96(5):965–72.

    Article  CAS  PubMed  Google Scholar 

  33. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y, et al. DNA methylation variants at HIF3A locus, B vitamins intake, and long-term weight change: gene-diet interactions in two US cohorts. Diabetes. 2015. doi:10.2337/db15-0264.

    Google Scholar 

  34. Jaaskelainen T, Paananen J, Lindstrom J, Eriksson JG, Tuomilehto J, Uusitupa M. Genetic predisposition to obesity and lifestyle factors--the combined analyses of twenty-six known BMI- and fourteen known waist:hip ratio (WHR)-associated variants in the Finnish Diabetes Prevention Study. Br J Nutr. 2013;110(10):1856–65.

    Article  PubMed  Google Scholar 

  35. Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610. This paper assessed gene-diet interaction among all established susceptibility loci associated with BMI in GWAS.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012;367(15):1387–96. This paper assessed gene-diet interaction among all established susceptibility loci associated with BMI in GWAS.

  37. Kantor ED, Giovannucci EL. Gene-diet interactions and their impact on colorectal cancer risk. Curr Nutr Rep. 2015;4(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  38. Moffitt TE, Caspi A, Rutter M. Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry. 2005;62(5):473–81. This paper reviewed the basic strategies for assessing gene-diet interactions.

    Article  CAS  PubMed  Google Scholar 

  39. Figueiredo JC, Hsu L, Hutter CM, Lin Y, Campbell PT, Baron JA, et al. Genome-wide diet-gene interaction analyses for risk of colorectal cancer. PLoS Genet. 2014;10(4):e1004228.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Kelei Li, Tao Huang, and Duo Li declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Huang.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Huang, T. & Li, D. Gene–Diet Interaction on Body Weight Maintenance. Curr Nutr Rep 4, 209–213 (2015). https://doi.org/10.1007/s13668-015-0133-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0133-7

Keywords

Navigation