Skip to main content

Advertisement

Log in

Resveratrol and Cardiovascular Disease

  • HOT TOPIC
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Resveratrol, a phytoalexin and antioxidant polyphenol found in red wine and various plants, is a promising therapeutic compound. Experimental evidence suggests that resveratrol might exert beneficial effects for the prevention of cardiovascular diseases, ischemic injuries, obesity, diabetes, inflammation, and so on. However, the molecular mechanisms underlying the beneficial effects of resveratrol remain to be determined. Here, we provide a review of the studies on resveratrol, especially with respect to cyclooxygenase (COX), peroxisome proliferator-activated receptor (PPAR), and endothelial nitric oxide synthase (eNOS), and discuss their association with reduced risk for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest published recently, have been highlighted as: • Of importance •• Of major importance

  1. Takaoka M. Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imp Univ. 1940;3:1–16.

    CAS  Google Scholar 

  2. Nonomura S, Kanagawa H, Makimoto A. Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-jo-kon (Polygonum cuspidatum Sieb. et Zucc.). Yakugaku Zasshi. 1963;83:988–90.

    CAS  PubMed  Google Scholar 

  3. Langcake P, Pryce RJ. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol. 1976;9:77–86.

    Article  CAS  Google Scholar 

  4. Kimura Y, Okuda H, Arichi S. Effects of stilbenes on arachidonate metabolism in leukocytes. Biochim Biophys Acta. 1985;834:275–8.

    Article  CAS  PubMed  Google Scholar 

  5. Siemann EH, Creasy LL. Concentration of the phytoalexin resveratrol in wine. Am J Enol Vitic. 1992;43:49–52.

    CAS  Google Scholar 

  6. Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–20.

    Article  CAS  PubMed  Google Scholar 

  7. Bradamante S, Barenghi L, Villa A. Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev. 2004;22:169–88.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Q, Xu J, Rottinghaus GE, et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 2002;958:439–47.

    Article  CAS  PubMed  Google Scholar 

  9. Sinha K, Chaudhary G, Gupta YK. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci. 2002;71:655–65.

    Article  CAS  PubMed  Google Scholar 

  10. Inoue H, Jiang XF, Katayama T, et al. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice. Neurosci Lett. 2003;352:203–6.

    Article  CAS  PubMed  Google Scholar 

  11. Stoclet JC, Chataigneau T, Ndiaye M, et al. Vascular protection by dietary polyphenols. Eur J Pharmacol. 2004;500:299–313.

    Article  CAS  PubMed  Google Scholar 

  12. Cordova AC, Jackson LS, Berke-Schlessel DW, et al. The cardiovascular protective effect of red wine. J Am Coll Surg. 2005;200:428–39.

    Article  PubMed  Google Scholar 

  13. Opie LH, Lecour S. The red wine hypothesis: from concepts to protective signalling molecules. Eur Heart J. 2007;28:1683–93.

    Article  CAS  PubMed  Google Scholar 

  14. St. Leger AS, Cochrane AL, Moore F. Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet. 1979;1:1017–20.

    Article  CAS  PubMed  Google Scholar 

  15. Richard JL. Coronary risk factors. The French paradox. Arch Mal Coeur Vaiss. 1987;80:17–21.

    PubMed  Google Scholar 

  16. Sato M, Maulik N, Das DK. Cardioprotection with alcohol: role of both alcohol and polyphenolic antioxidants. Ann N Y Acad Sci. 2002;957:122–35.

    Article  CAS  PubMed  Google Scholar 

  17. Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur J Endocrinol. 1998;138:619–20.

    Article  CAS  PubMed  Google Scholar 

  18. Frémont L. Biological effects of resveratrol. Life Sci. 2000;66:663–73.

    Article  PubMed  Google Scholar 

  19. Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res. 2005;49:405–30.

    Article  PubMed  Google Scholar 

  20. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5:493–506.

    Article  CAS  PubMed  Google Scholar 

  21. Smith WL. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends Biochem Sci. 2008;33:27–37.

    Article  CAS  PubMed  Google Scholar 

  22. Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437.

    Article  CAS  PubMed  Google Scholar 

  23. Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in Apcδ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803–9.

    Article  CAS  PubMed  Google Scholar 

  24. Morham SG, Langenbach R, Loftin CD, et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell. 1995;83:473–82.

    Article  CAS  PubMed  Google Scholar 

  25. Dinchuk JE, Car BD, Focht RJ, et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature. 1995;378:406–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997;91:197–208.

    Article  CAS  PubMed  Google Scholar 

  27. Dubois RN, Abramson SB, Crofford L, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    CAS  PubMed  Google Scholar 

  28. Grosser T, Fries S, Fitzgerald GA. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest. 2006;116:4–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Szewczuk LM, Forti L, Stivala LA, et al. Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2. J Biol Chem. 2004;279:22727–37.

    Article  CAS  PubMed  Google Scholar 

  30. Tiano HF, Loftin CD, Akunda J, et al. Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res. 2002;62:3395–401.

    CAS  PubMed  Google Scholar 

  31. Subbaramaiah K, Chung WJ, Michaluart P, et al. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem. 1998;273:21875–82.

    Article  CAS  PubMed  Google Scholar 

  32. Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.

    Article  CAS  PubMed  Google Scholar 

  33. Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58:726–41.

    Article  CAS  PubMed  Google Scholar 

  34. Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett. 2008;582:2–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell. 1995;83:803–12.

    Article  CAS  PubMed  Google Scholar 

  36. Kliewer SA, Lenhard JM, Wilson TM, et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995;83:813–9.

    Article  CAS  PubMed  Google Scholar 

  37. Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPARγ. J Biol Chem. 2000;275:28028–32.

    CAS  PubMed  Google Scholar 

  38. Tsukamoto T, Nakata R, Tamura E, et al. Vaticanol C, a resveratrol tetramer, activates PPARα and PPARβ/δ in vitro and in vivo. Nutr Metab. 2010;7:46.

    Article  Google Scholar 

  39. Inoue H, Taba Y, Miwa Y, et al. Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002;22:1415–20.

    Article  CAS  PubMed  Google Scholar 

  40. Taba Y, Sasaguri T, Miyagi M, et al. Fluid shear stress induces lipocalin-type prostaglandin D2 synthase expression in vascular endothelial cells. Circ Res. 2000;86:967–73.

    Article  CAS  PubMed  Google Scholar 

  41. Sun H, Sheveleva E, Xu B, et al. Corticosteroids induced COX-2 expression in cardiomyocytes: role of glucocorticoid receptor and C/EBPβ. Am J Physiol Cell Physiol. 2008;295:C915–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yoshikawa N, Nagasaki M, Sano M, et al. Ligand-based gene expression profiling reveals novel roles of glucocorticoid receptor in cardiac metabolism. Am J Physiol Endocrinol Metab. 2009;296:E1363–73.

    Article  CAS  PubMed  Google Scholar 

  43. Tokudome S, Sano M, Shinmura K, et al. Glucocorticoid protects rodent hearts from ischemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase-derived PGD2 biosynthesis. J Clin Invest. 2009;119:1477–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Solomon SD, McMurray JJ, Pfeffer MA, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352:1071–80.

    Article  CAS  PubMed  Google Scholar 

  45. Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005;352:1092–102.

    Article  CAS  PubMed  Google Scholar 

  46. Kang K, Reilly SM, Karabacak V, et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7:485–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 2008;7:496–507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hertz R, Berman I, Keppler D, et al. Activation of gene transcription by prostacyclin analogues is mediated by the peroxisome-proliferators-activated receptor (PPAR). Eur J Biochem. 1996;235:242–7.

    Article  CAS  PubMed  Google Scholar 

  49. Hotta M, Nakata R, Katsukawa M, et al. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J Lipid Res. 2010;51:132–9.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Katsukawa M, Nakata R, Takizawa Y, et al. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim Biophys Acta. 1801;2010:1214–20.

    Google Scholar 

  51. Katsukawa M, Nakata R, Koeji S, et al. Citronellol and Geraniol, components if Rose oil, activates PPARα and γ and suppress Cyclooxygenase-2 expression. Biosci Biotechnol Biochem. 2011;75:1010–2.

    Article  CAS  PubMed  Google Scholar 

  52. Nakata R, Takizawa Y, Takai A, et al. Evaluation of food-derived functional ingredient by activation of PPAR and suppression of COX-2 expression. Food Sci Technol Res. 2013;19:339–45. This article provides the evaluation of food-derived functional components including resveratrol targeted to PPARs and COX-2.

    Article  CAS  Google Scholar 

  53. Hattori R, Otani H, Maulik N, et al. Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol. 2002;282:H1988–95.

    CAS  Google Scholar 

  54. Zou JG, Wang ZR, Huang YZ, et al. Effect of red wine and wine polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits. Int J Mol Med. 2003;11:317–20.

    CAS  PubMed  Google Scholar 

  55. Miatello R, Vázquez M, Renna N, et al. Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am J Hypertens. 2005;18:864–70.

    Article  CAS  PubMed  Google Scholar 

  56. Rush JW, Quadrilatero J, Levy AS, et al. Chronic resveratrol enhances endothelium-dependent relaxation but does not alter eNOS levels in aorta of spontaneously hypertensive rats. Exp Biol Med. 2007;232:814–22.

    CAS  Google Scholar 

  57. Zhang H, Morgan B, Potter BJ, et al. Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am J Physiol. 2010;299:H985–94.

    CAS  Google Scholar 

  58. Xia N, Daiber A, Habermeier A, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein-E-knockout mice. J Pharmacol Exp Ther. 2010;335:149–54.

    Article  CAS  PubMed  Google Scholar 

  59. Dudzinski DM, Igarashi J, Greif D, et al. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol. 2006;46:235–76.

    Article  CAS  PubMed  Google Scholar 

  60. Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res. 2007;75:247–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Chen CK, Pace-Asciak CR. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol. 1996;27:363–6.

    Article  CAS  PubMed  Google Scholar 

  62. Rakici O, Kiziltepe U, Coskun B, et al. Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int J Cardiol. 2005;105:209–15.

    Article  PubMed  Google Scholar 

  63. Li HF, Tian ZF, Qiu XQ, et al. A study of mechanisms involved in vasodilatation induced by resveratrol in isolated porcine coronary artery. Physiol Res. 2006;55:365–72.

    CAS  PubMed  Google Scholar 

  64. Orallo F, Alvarez E, Camiña M, et al. The possible implication of trans-resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol. 2002;61:294–302.

    Article  CAS  PubMed  Google Scholar 

  65. Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106:1652–8.

    Article  CAS  PubMed  Google Scholar 

  66. Wang N, Ko SH, Chai W, et al. Resveratrol recruits rat muscle microvasculature via a nitric oxide-dependent mechanism that is blocked by TNFα. Am J Physiol. 2011;300:E195–201.

    CAS  Google Scholar 

  67. Klinge CM, Blankenship KA, Risinger KF, et al. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors α and β in endothelial cells. J Biol Chem. 2003;280:2701–12.

    Google Scholar 

  68. Klinge CM, Wickramasinghe NS, Ivanova MM, et al. Resveratrol stimulates nitric oxide production by increasing estrogen receptor α-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells. FASEB J. 2008;22:2185–97.

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi S, Uchiyama T, Toda K. Differential effect of resveratrol on nitric oxide production in endothelial F-2 cells. Biol Pharm Bull. 2009;32:1840–3.

    Article  CAS  PubMed  Google Scholar 

  70. Ashby J, Tinwell H, Pennie W, et al. Partial and weak oestrogenicity of the red wine constituent resveratrol: consideration of its superagonist activity in MCF-7 cells and its suggested cardiovascular protective effects. J Appl Toxicol. 1999;19:39–45.

    Article  CAS  PubMed  Google Scholar 

  71. Fitzpatrick DF, Hirschfield SL, Coffey RG. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol. 1993;265:H774–8.

    CAS  PubMed  Google Scholar 

  72. Taubert D, Berkels R, Klaus W, et al. Nitric oxide formation and corresponding relaxation of porcine coronary arteries induced by plant phenols: essential structural features. J Cardiovasc Pharmacol. 2002;40:701–13.

    Article  CAS  PubMed  Google Scholar 

  73. Yang J, Wang N, Li J, et al. Effects of resveratrol on NO secretion stimulated by insulin and its dependence on SIRT1 in high glucose cultured endothelial cells. Endocrine. 2010;37:365–72.

    Article  CAS  PubMed  Google Scholar 

  74. Goldberg DM, Yan J, Soleas GJ. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem. 2003;36:79–87.

    Article  CAS  PubMed  Google Scholar 

  75. Walle T, Hsieh F, DeLegge MH, et al. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004;32:1377–82.

    Article  CAS  PubMed  Google Scholar 

  76. Räthel TR, Samtleben R, Vollmar AM, et al. Activation of endothelial nitric oxide synthase by red wine polyphenols: impact of grape cultivars, growing area and the vinification process. J Hypertens. 2007;25:541–9.

    Article  PubMed  Google Scholar 

  77. Appeldoorn MM, Venema DP, Peters TH, et al. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro. J Agric Food Chem. 2009;57:7693–9.

    Article  CAS  PubMed  Google Scholar 

  78. Nicholson SK, Tucker GA, Brameld JM. Physiological concentrations of dietary polyphenols regulate vascular endothelial cell expression of genes important in cardiovascular health. Br J Nutr. 2010;103:1398–403.

    Article  CAS  PubMed  Google Scholar 

  79. Takahashi S, Nakashima Y. Repeated and long-term treatment with physiological concentrations of resveratrol promotes NO production in vascular endothelial cells. Br J Nutr. 2011;104:1–7.

    Google Scholar 

  80. Takizawa Y, Kosuge Y, Awaji H, et al. Up-regulation of endothelial nitric oxide synthase (eNOS), silent mating type information regulation 2 homologue 1 (SIRT1) and autophagy-related genes by repeated treatments with resveratrol in human umbilical vein endothelial cells. Br J Nutr. 2013;110:2150–5. This article presents the effect of repeated treatment with lower concentrations of resveratrol on human umbilical vein endothelial cells.

    Article  CAS  PubMed  Google Scholar 

  81. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  CAS  PubMed  Google Scholar 

  82. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430:686–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280:17038–45.

    Article  CAS  PubMed  Google Scholar 

  84. Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285:8340–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Dai H, Kustigian L, Carney D. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem. 2010;285:32695–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Corton JC, Apte U, Anderson SP, et al. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem. 2004;279:46204–12.

    Article  CAS  PubMed  Google Scholar 

  87. Tanno M, Kuno A, Yano T, et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem. 2010;285:8375–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPARγ. Nature. 2004;429:771–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Buryanovskyy L, Fu Y, Boyd M, et al. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry. 2004;43:11417–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Zang M, Xu S, Maitland-Toolan KA, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55:2180–91.

    Article  CAS  PubMed  Google Scholar 

  91. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127:1109–22.

    Article  CAS  PubMed  Google Scholar 

  92. Park SJ, Ahmad F, Philip A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148:421–33. This article presents cAMP phosphodiesterases as a new molecular target of resveratrol.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (No. 24300217) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, the Iijima Memorial Foundation for the Promotion of Food Science and Technology, Japan Food Chemical Research Foundation, and the Kieikai Research Foundation.

This article was reviewed by Dr. Julia H. Goedecke of the University of Cape Town (South Africa).

Compliance with Ethics Guidelines

Conflict of Interest

Rieko Nakata and Hiroyasu Inoue declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Inoue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakata, R., Inoue, H. Resveratrol and Cardiovascular Disease. Curr Nutr Rep 3, 163–169 (2014). https://doi.org/10.1007/s13668-014-0084-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-014-0084-4

Keywords

Navigation