Skip to main content

Advertisement

Log in

Genetic Variants in the FADS Gene: Implications for Dietary Recommendations for Fatty Acid Intake

  • Cardiovascular Disease (JH Goedecke, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Unequivocally, genetic variants within the fatty acid desaturase (FADS) cluster are determinants of long chain polyunsaturated fatty acid (LC-PUFA) levels in circulation, cells, and tissues. A recent series of papers have addressed these associations in the context of ancestry; evidence clearly supports that the associations are robust to ethnicity. However, ~80 % of African Americans carry two copies of the alleles associated with increased levels of arachidonic acid compared with only ~45 % of European Americans, raising important questions of whether gene-PUFA interactions induced by a modern western diet are differentially driving the risk of diseases of inflammation in diverse populations, and are these interactions leading to health disparities. We highlight an important aspect thus far missing in the debate regarding dietary recommendations; we contend that current evidence from genetics strongly suggest that an individual’s, or at the very least the population from which an individual is sampled, genetic architecture must be factored into dietary recommendations currently in place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALA:

α-linolenic acid

ARA:

Arachidonic acid

COX:

Cyclooxygenase

DGLA:

Dihomo γ-linolenic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ETA:

Eicosatetraenoic acid

CAD:

Coronary artery disease

CVD:

Cardiovascular disease

GLA:

γ-linolenic acid

GWAS:

Genome wide association study

IMT:

Intima-media thickness

LA:

Linoleic acid

Lc:

Long chain

LD:

Linkage disequilibrium

LTB4:

Leukotriene B4

C18:

18 carbon

MWD:

Modern western diet

NSAID:

Non-steroidal anti-inflammatory drug

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

PLA2 :

Phospholipase A2

PUFA:

Polyunsaturated fatty acid

SDA:

Stearidonic acid

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Park WJ et al. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3. J Lipid Res. 2009;50(6):1195–202.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Sprecher H. Biochemistry of essential fatty acids. Prog Lipid Res. 1981;20:13–22.

    Article  PubMed  CAS  Google Scholar 

  3. Poisson JP et al. Evidence that liver microsomes of human neonates desaturate essential fatty acids. Biochim Biophys Acta. 1993;1167(2):109–13.

    Article  PubMed  CAS  Google Scholar 

  4. Horrobin DF. Fatty acid metabolism in health and disease: the role of delta-6-desaturase. Am J Clin Nutr. 1993;57(5 Suppl):732S–6S. discussion 736S-737S.

    PubMed  CAS  Google Scholar 

  5. el Boustani S et al. Direct in vivo characterization of delta 5 desaturase activity in humans by deuterium labeling: effect of insulin. Metabolism. 1989;38(4):315–21.

    Article  PubMed  Google Scholar 

  6. Blasbalg TL et al. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. 2011;93(5):950–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Simopoulos AP. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. World Rev Nutr Diet. 2011;102:10–21.

    Article  PubMed  CAS  Google Scholar 

  8. Gibson RA et al. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot Essent Fat Acids. 2013;88(1):139–46.

    Article  CAS  Google Scholar 

  9. Hibbeln JR et al. Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr. 2006;83(6 Suppl):1483S–93S.

    PubMed  CAS  Google Scholar 

  10. Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J. 1989;259(2):315–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Serhan CN et al. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids. 2004;39(11):1125–32.

    Article  PubMed  CAS  Google Scholar 

  12. Serhan CN et al. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat. 2004;73(3–4):155–72.

    Article  PubMed  CAS  Google Scholar 

  13. Serhan CN. Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care. 2005;8(2):115–21.

    Article  PubMed  CAS  Google Scholar 

  14. Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb. 1992;12(8):911–9.

    Article  PubMed  CAS  Google Scholar 

  15. Harris WS et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation. 2009;119(6):902–7.

    Article  PubMed  Google Scholar 

  16. Siguel E. A new relationship between total/high density lipoprotein cholesterol and polyunsaturated fatty acids. Lipids. 1996;31(Suppl):S51–6.

    Article  PubMed  CAS  Google Scholar 

  17. Ramsden CE, Hibbeln JR, Majchrzak-Hong SF. All PUFAs are not created equal: absence of CHD benefit specific to linoleic acid in randomized controlled trials and prospective observational cohorts. World Rev Nutr Diet. 2011;102:30–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Ramsden CE et al. n-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials. Br J Nutr. 2010;104(11):1586–600.

    Article  PubMed  CAS  Google Scholar 

  19. Ramsden CE et al. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ. 2013;346:e8707.

    Article  PubMed  Google Scholar 

  20. Glaser C, Heinrich J, Koletzko B. Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism. 2010;59(7):993–9.

    Article  PubMed  CAS  Google Scholar 

  21. Lattka E et al. Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clin Nutr. 2010;29(3):277–87.

    Article  PubMed  CAS  Google Scholar 

  22. Mathias RA et al. The impact of FADS genetic variants on omega6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet. 2011;12:50. This article provides the first insight into profound differences in LA-PUFA metabolism and levels between African Americans and European Americans with accompanying differences in genetic determinants of the same.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Schaeffer L et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15(11):1745–56.

    Article  PubMed  CAS  Google Scholar 

  24. Sergeant S et al. Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome. Br J Nutr. 2012;107(4):547–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Mathias RA et al. FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population. J Lipid Res. 2010;51(9):2766–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Malerba G et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43(4):289–99.

    Article  PubMed  CAS  Google Scholar 

  27. Rzehak P et al. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 ( FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr. 2009;101(1):20–6.

    Article  PubMed  CAS  Google Scholar 

  28. Xie L, Innis SM. Association of fatty acid desaturase gene polymorphisms with blood lipid essential fatty acids and perinatal depression among Canadian women: a pilot study. J Nutrigenet Nutrigenomics. 2009;2(4–5):243–50.

    Article  PubMed  CAS  Google Scholar 

  29. Xie L, Innis SM. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr. 2008;138(11):2222–8.

    Article  PubMed  CAS  Google Scholar 

  30. Porenta SR et al. Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study. Cancer Prev Res (Phila). 2013;6(11):1212–21.

    Article  CAS  Google Scholar 

  31. Hong SH et al. Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men. Clin Interv Aging. 2013;8:585–96.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Harslof LB et al. FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr. 2013;97(6):1403–10.

    Article  PubMed  Google Scholar 

  33. Li SW et al. FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. PLoS One. 2013;8(1):e55869.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Gillingham LG et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]alpha-linolenic acid metabolism and plasma fatty acid composition. Am J Clin Nutr. 2013;97(1):195–207.

    Article  PubMed  CAS  Google Scholar 

  35. Freemantle E et al. Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue. PLoS One. 2012;7(8):e42696.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Lattka E et al. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Br J Nutr. 2013;109(7):1196–210.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Steer CD et al. Polyunsaturated fatty acid levels in blood during pregnancy, at birth and at 7 years: their associations with two common FADS2 polymorphisms. Hum Mol Genet. 2012;21(7):1504–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Morales E et al. Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS One. 2011;6(2):e17181.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Lattka E et al. Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am J Clin Nutr. 2011;93(2):382–91.

    Article  PubMed  CAS  Google Scholar 

  40. Koletzko B et al. Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr. 2011;93(1):211–9.

    Article  PubMed  CAS  Google Scholar 

  41. Kwak JH et al. FADS gene polymorphisms in Koreans: association with omega6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis. 2011;214(1):94–100.

    Article  PubMed  CAS  Google Scholar 

  42. Rzehak P et al. Variants of the FADS1 FADS2 gene cluster, blood levels of polyunsaturated fatty acids and eczema in children within the first 2 years of life. PLoS One. 2010;5(10):e13261.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Bokor S et al. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res. 2010;51(8):2325–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Kathiresan S et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40(2):189–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Willer CJ et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–9.

    Article  PubMed  CAS  Google Scholar 

  46. Aulchenko YS et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet. 2009;41(1):47–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Kathiresan S et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41(1):56–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Lettre G et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet. 2011;7(2):e1001300.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Lu Y et al. Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin Nutr. 2010;92(1):258–65.

    Article  PubMed  CAS  Google Scholar 

  50. Standl M et al. FADS gene cluster modulates the effect of breastfeeding on asthma. Results from the GINIplus and LISAplus studies. Allergy. 2012;67(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  51. Rizzi TS et al. Genetic variance in combination with fatty acid intake might alter composition of the fatty acids in brain. PLoS One. 2013;8(6):e68000.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Aslibekyan S et al. Fatty acid desaturase gene variants, cardiovascular risk factors, and myocardial infarction in the Costa Rica study. Front Genet. 2012;3:72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Molto-Puigmarti C et al. Genetic variation in FADS genes and plasma cholesterol levels in 2-year-old infants: KOALA Birth Cohort Study. PLoS One. 2013;8(5):e61671.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Gieger C et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4(11):e1000282.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Hellstrand S et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res. 2012;53(6):1183–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Steer CD et al. Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age. Am J Clin Nutr. 2013;98(6):1575–82.

    Article  PubMed  CAS  Google Scholar 

  57. Abecasis GR et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  PubMed  Google Scholar 

  58. Tanaka T et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 2009;5(1):e1000338.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Rosenberg NA et al. Genome-wide association studies in diverse populations. Nat Rev Genet. 2010;11(5):356–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. Nature. 2011;475(7355):163–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Johnson GH, Fritsche K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. J Acad Nutr Diet. 2012;112(7):1029–41. 1041 e1-15.

    Article  PubMed  CAS  Google Scholar 

  62. Steffen BT et al. Ethnicity, plasma phospholipid fatty acid composition and inflammatory/endothelial activation biomarkers in the Multi-Ethnic Study of Atherosclerosis (MESA). Eur J Clin Nutr. 2012;66(5):600–5.

    Article  PubMed  CAS  Google Scholar 

  63. Mathias RA et al. Adaptive evolution of the FADS gene cluster within Africa. PLoS One. 2012;7(9):e44926. This article provides compelling evidence that genetic determinants of LS-PUFA metabolism differ across populations, is particularly important in populations of African ancestry, and have undergone strong effects of selective pressure within Africa.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Ameur A et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am J Hum Genet. 2012;90(5):809–20. This article provides compelling evidence that genetic determinants of LS-PUFA metabolism differ across populations, is particularly important in populations of African ancestry, and have undergone strong effects of selective pressure within Africa.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Braveman P. Health disparities and health equity: concepts and measurement. Annu Rev Public Health. 2006;27:167–94.

    Article  PubMed  Google Scholar 

  66. Sankar P, Cho MK, Mountain J. Race and ethnicity in genetic research. Am J Med Genet A. 2007;143A(9):961–70.

    Article  PubMed  Google Scholar 

  67. Kuzawa CW, Sweet E. Epigenetics and the embodiment of race: developmental origins of US racial disparities in cardiovascular health. Am J Hum Biol. 2009;21(1):2–15.

    Article  PubMed  Google Scholar 

  68. Hindorff LA et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106(23):9362–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Hindorff LA, et al. A catalog of published genome-wide association studies. [cited 2014; Available from: http://www.genome.gov/gwastudies.

  70. Gieger C, Geistlinger L, Altmaier E, Hrabe de AM, Kronenberg F, Meitinger T, et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4:e1000282. doi:10.1371/journal.pgen.1000282.

  71. Malerba G, Schaeffer L, Xumerle L, Klopp N, Trabetti E, Biscuola M, et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43:289–99.

    Google Scholar 

  72. Baylin A, Ruiz-Narvaez E, Kraft P, Campos H. Alpha-linolenic acid, Delta6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr. 2007;85:554–60.

    Google Scholar 

  73. Kwak JH, Paik JK, Kim OY, Jang Y, Lee SH, Ordovas JM, et al. FADS gene polymorphisms in Koreans: association with omega6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis. 2011;214:94–100.

    Google Scholar 

  74. Martinelli N, Girelli D, Malerba G, Guarini P, Illig T, Trabetti E, et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr. 2008;88:941–49.

    Google Scholar 

  75. Li SW, Lin K, Ma P, Zhang ZL, Zhou YD, Lu SY, et al. FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. Plos One. 2013;8:e55869. doi:10.1371/journal.pone.0055869.

  76. Lu Y, Vaarhorst A, Merry AH, Dolle ME, Hovenier R, Imholz S, et al. Markers of endogenous desaturase activity and risk of coronary heart disease in the CAREMA cohort study. Plos One. 2012;7:e41681. doi:10.1371/journal.pone.0041681.

  77. Helgadottir A et al. Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population. Am J Hum Genet. 2005;76(3):505–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Helgadottir A et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet. 2004;36(3):233–9.

    Article  PubMed  CAS  Google Scholar 

  79. Lohmussaar E et al. ALOX5AP gene and the PDE4D gene in a central European population of stroke patients. Stroke. 2005;36(4):731–6.

    Article  PubMed  CAS  Google Scholar 

  80. Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov. 2005;4(8):664–72.

    Article  PubMed  CAS  Google Scholar 

  81. Riccioni G, Back M, Capra V. Leukotrienes and atherosclerosis. Curr Drug Targets. 2010;11(7):882–7.

    Article  PubMed  CAS  Google Scholar 

  82. Mehrabian M et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res. 2002;91(2):120–6.

    Article  PubMed  CAS  Google Scholar 

  83. Marangoni F et al. Polyunsaturated fatty acids in maternal plasma and in breast milk. Prostaglandins Leukot Essent Fat Acids. 2002;66(5–6):535–40.

    Article  CAS  Google Scholar 

  84. Marangoni F et al. Cigarette smoke negatively and dose-dependently affects the biosynthetic pathway of the n-3 polyunsaturated fatty acid series in human mammary epithelial cells. Lipids. 2004;39(7):633–7.

    Article  PubMed  CAS  Google Scholar 

  85. Smit EN et al. Estimated biological variation of the mature human milk fatty acid composition. Prostaglandins Leukot Essent Fat Acids. 2002;66(5–6):549–55.

    Article  CAS  Google Scholar 

  86. Carnielli VP et al. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr Res. 1996;40(1):169–74.

    Article  PubMed  CAS  Google Scholar 

  87. Caspi A et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci U S A. 2007;104(47):18860–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Brookes KJ et al. Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2006;60(10):1053–61.

    Article  PubMed  CAS  Google Scholar 

  89. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

  90. Arcos-Burgos M et al. Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am J Hum Genet. 2004;75(6):998–1014.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Ogdie MN et al. Attention deficit hyperactivity disorder: fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. Am J Hum Genet. 2004;75(4):661–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Fallin MD et al. Genomewide linkage scan for bipolar-disorder susceptibility loci among Ashkenazi Jewish families. Am J Hum Genet. 2004;75(2):204–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Ferrucci L et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006;91(2):439–46.

    Article  PubMed  CAS  Google Scholar 

  94. Montoya MT et al. Fatty acid saturation of the diet and plasma lipid concentrations, lipoprotein particle concentrations, and cholesterol efflux capacity. Am J Clin Nutr. 2002;75(3):484–91.

    PubMed  CAS  Google Scholar 

  95. Chan JK et al. Effect of dietary alpha-linolenic acid and its ratio to linoleic acid on platelet and plasma fatty acids and thrombogenesis. Lipids. 1993;28(9):811–7.

    Article  PubMed  CAS  Google Scholar 

  96. Thijssen MA, Mensink RP. Small differences in the effects of stearic acid, oleic acid, and linoleic acid on the serum lipoprotein profile of humans. Am J Clin Nutr. 2005;82(3):510–6.

    PubMed  CAS  Google Scholar 

  97. Liou YA et al. Decreasing linoleic acid with constant alpha-linolenic acid in dietary fats increases (n-3) eicosapentaenoic acid in plasma phospholipids in healthy men. J Nutr. 2007;137(4):945–52.

    PubMed  CAS  Google Scholar 

  98. Wijendran V et al. Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets. Prostaglandins Leukot Essent Fat Acids. 2013;89(5):345–50.

    Article  CAS  Google Scholar 

  99. Hoile SP et al. Maternal fat intake in rats alters 20:4n-6 and 22:6n-3 status and the epigenetic regulation of Fads2 in offspring liver. J Nutr Biochem. 2013;24(7):1213–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Burdge GC, Lillycrop KA. Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care. 2013.

  101. Garagnani P et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell. 2012;11(6):1132–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institutes of Health, P50 AT002782.

Compliance with Ethics Guidelines

Conflict of Interest

Rasika A. Mathias declares that she has no conflict of interest.

Vrindarani Pani declares that she has no conflict of interest.

Floyd H. Chilton is an unpaid consultant for Gene Smart Health and receives no compensation or equity in this role. This information has been disclosed to Wake Forest University Health Sciences (WFUHS) and outside sponsors, as appropriate, and is institutionally managed.

All authors have necessary ethics training.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasika A. Mathias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, R.A., Pani, V. & Chilton, F.H. Genetic Variants in the FADS Gene: Implications for Dietary Recommendations for Fatty Acid Intake. Curr Nutr Rep 3, 139–148 (2014). https://doi.org/10.1007/s13668-014-0079-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-014-0079-1

Keywords

Navigation