Skip to main content

Advertisement

Log in

Idiopathic Pulmonary Fibrosis: 8 Years On After Nintedanib and Pirfenidone Approval—What Is on the Horizon?

  • REVIEW
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The approval of nintedanib and pirfenidone has changed the treatment landscape of idiopathic pulmonary fibrosis (IPF); however, both drugs only slow disease progression and are burdened by tolerability issues. We summarize the most advanced developmental drugs in IPF, but also mention selected compounds in earlier phases.

Recent Findings

Several compounds are currently being tested in IPF; the number of trials has increased exponentially in the last 3 years. Four compounds have reached phase 3: BI101550, an oral PDE4B preferential inhibitor; Pamrevlumab, an anticonnective tissue growth factor intravenous monoclonal antibody; Pentraxin-2, a recombinant human form of serum amyloid protein; Treprostinil, a synthetic prostanoid, with an inhaled formulation, currently used for pulmonary hypertension.

Summary

New drugs are likely to reach the clinic in the near future. This will provide more opportunities for treatment of IPF but will also pose unprecedented challenges regarding drug selection and administration(i.e., sequential vs. combination).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Antoniou KM, Bissell BD, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2022;205:E18-47. https://doi.org/10.1164/rccm.202202-0399ST.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44-68. https://doi.org/10.1164/rccm.201807-1255ST.

    Article  PubMed  Google Scholar 

  3. Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018;6:138–53. https://doi.org/10.1016/S2213-2600(17)30433-2.

    Article  PubMed  Google Scholar 

  4. Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun. 2020;11:3559. https://doi.org/10.1038/s41467-020-17358-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal. 2020;66:109482. https://doi.org/10.1016/j.cellsig.2019.109482.

  6. Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, et al. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest. 2020;157:1175–87. https://doi.org/10.1016/j.chest.2019.10.032.

  7. Pardo A, Selman M. The interplay of the genetic architecture, aging, and environmental factors in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;64:163–72. https://doi.org/10.1165/rcmb.2020-0373PS.

    Article  CAS  PubMed  Google Scholar 

  8. Bédard Méthot D, Leblanc É, Lacasse Y. Meta-analysis of gastroesophageal reflux disease and idiopathic pulmonary fibrosis. Chest. 2019;155:33–43. https://doi.org/10.1016/j.chest.2018.07.038.

    Article  PubMed  Google Scholar 

  9. Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155:242–8. https://doi.org/10.1164/ajrccm.155.1.9001319.

    Article  CAS  PubMed  Google Scholar 

  10. Stock CJW, Renzoni EA. Telomeres in interstitial lung disease. J Clin Med. 2021;7:1384. https://doi.org/10.3390/jcm10071384.

  11. Wu X, Li W, Luo Z, Chen Y. The minor T allele of the MUC5B promoter rs35705950 associated with susceptibility to idiopathic pulmonary fibrosis: a meta-analysis. Sci Rep. 2021;11:1–18. https://doi.org/10.1038/s41598-021-03533-z.

    Article  CAS  Google Scholar 

  12. Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, et al. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets. 2022;26:617–31. https://doi.org/10.1080/14728222.2022.2114897.

    Article  CAS  PubMed  Google Scholar 

  13. Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The genetic and epigenetic footprint in idiopathic pulmonary fibrosis and familial pulmonary fibrosis: a state-of-the-art review. Diagnostics. 2022;12:3107. https://doi.org/10.3390/diagnostics12123107.

  14. Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL, et al. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;178:729–37. https://doi.org/10.1164/rccm.200804-550OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spagnolo P, Semenzato U. Revealing the pathogenic and ageing-related mechanisms of the enigmatic idiopathic pulmonary fibrosis (and chronic obstructive pulmonary disease). Curr Opin Pulm Med. 2022;28:296–302. https://doi.org/10.1097/MCP.0000000000000876.

    Article  CAS  PubMed  Google Scholar 

  16. Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol - Lung Cell Mol Physiol. 2011;300:391–401. https://doi.org/10.1152/ajplung.00097.2010.

    Article  CAS  Google Scholar 

  17. ATS Board Of Directors, ERS Executive Committee. Idiopathic pulmonary fibrosis: diagnosis and treatment international consensus statement. Am J Respir Crit Care Med. 2000;161:646–64. https://doi.org/10.1164/ajrccm.161.2.ats3-00.

  18. Idiopathic Pulmonary Fibrosis Clinical Research Network, Raghu G, Anstrom KJ, King TE, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366:1968–77. https://doi.org/10.1056/NEJMoa1113354.

  19. Raghu G, Rochwerg B, Zhang Y, Garcia CAC, Azuma A, Behr J, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis: an update of the 2011 clinical practice guideline. Am J Respir Crit Care Med. 2015;192:e3-19. https://doi.org/10.1164/rccm.201506-1063ST.

    Article  PubMed  Google Scholar 

  20. Oku H, Nakazato H, Horikawa T, Tsuruta Y, Suzuki R. Pirfenidone suppresses tumor necrosis factor-α, enhances interleukin-10 and protects mice from endotoxic shock. Eur J Pharmacol. 2002;446:167–76. https://doi.org/10.1016/s0014-2999(02)01757-0.

    Article  CAS  PubMed  Google Scholar 

  21. Nakazato H, Oku H, Yamane S, Tsuruta Y, Suzuki R. A novel anti-fibrotic agent pirfenidone suppresses tumor necrosis factor-α at the translational level. Eur J Pharmacol. 2002;446:177–85. https://doi.org/10.1016/s0014-2999(02)01758-2.

    Article  CAS  PubMed  Google Scholar 

  22. Iyer SN, Margolin SB, Hyde DM, Giri SN. Lung fibrosis is ameliorated by pirfenidone fed in diet after the second dose in a three-dose bleomycin-hamster model. Exp Lung Res. 1998;24:119–33. https://doi.org/10.3109/01902149809046058.

    Article  CAS  PubMed  Google Scholar 

  23. Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther. 2014;349:209–20. https://doi.org/10.1124/jpet.113.208223.

    Article  CAS  PubMed  Google Scholar 

  24. Hostettler KE, Zhong J, Papakonstantinou E, Karakiulakis G, Tamm M, Seidel P, et al. Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respir Res. 2014;15:157. https://doi.org/10.7326/0003-4819-134-2-200101160-00015.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roth GJ, Binder R, Colbatzky F, Dallinger C, Schlenker-Herceg R, Hilberg F, et al. Nintedanib: from discovery to the clinic. J Med Chem. 2015;58:1053–63. https://doi.org/10.1021/jm501562a.

    Article  CAS  PubMed  Google Scholar 

  26. King TE, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92. https://doi.org/10.1056/NEJMoa1402582.

    Article  CAS  PubMed  Google Scholar 

  27. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82. https://doi.org/10.1056/NEJMoa1402584.

  28. Cameli P, Alonzi V, d’Alessandro M, Bergantini L, Pordon E, Guerrieri M, et al. The effectiveness of nintedanib in patients with idiopathic pulmonary fibrosis, familial pulmonary fibrosis and progressive fibrosing interstitial lung diseases: a real-world study. Biomedicines. 2022;8:1973. https://doi.org/10.3390/biomedicines10081973.

  29. Antoniou K, Markopoulou K, Tzouvelekis A, Trachalaki A, Vasarmidi E, Organtzis J, et al. Efficacy and safety of nintedanib in a greek multicentre idiopathic pulmonary fibrosis registry: a retrospective, observational, cohort study. ERJ Open Res. 2020;27;6(1):00172–2019. https://doi.org/10.1183/23120541.00172-2019.

  30. Vietri L, Cameli P, Perruzza M, Cekorja B, Bergantini L, d’Alessandro M, et al. Pirfenidone in idiopathic pulmonary fibrosis: real-life experience in the referral centre of Siena. Ther Adv Respir Dis. 2020;14:1–8. https://doi.org/10.1177/1753466620906326.

    Article  CAS  Google Scholar 

  31. Lancaster L, Crestani B, Hernandez P, Inoue Y, Wachtlin D, Loaiza L, et al. Safety and survival data in patients with idiopathic pulmonary fibrosis treated with nintedanib: pooled data from six clinical trials. BMJ Open Respir Res. 2019;6:1–7. https://doi.org/10.1136/bmjresp-2018-000397.

    Article  Google Scholar 

  32. Nathan SD, Albera C, Bradford WZ, Costabel U, Glaspole I, Glassberg MK, et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir Med. 2017;5(1):33–41. https://doi.org/10.1016/S2213-2600(16)30326-5.

    Article  CAS  PubMed  Google Scholar 

  33. Zurkova M, Kriegova E, Kolek V, Lostakova V, Sterclova M, Bartos V, et al. Effect of pirfenidone on lung function decline and survival: 5-yr experience from a real-life IPF cohort from the Czech EMPIRE registry. Respir Res. 2019;20:1–11.

    Article  Google Scholar 

  34. Margaritopoulos GA, Trachalaki A, Wells AU, Vasarmidi E, Bibaki E, Papastratigakis G, et al. Pirfenidone improves survival in IPF: results from a real-life study. BMC Pulm Med. 2018;18:1–7. https://doi.org/10.1186/s12890-018-0736-z.

    Article  CAS  Google Scholar 

  35. Lancaster LH, de Andrade JA, Zibrak JD, Padilla ML, Albera C, Nathan SD, et al. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev 2017;146:170057. https://doi.org/10.1183/16000617.0057-2017.

  36. Tzouvelekis A, Karampitsakos T, Kontou M, Granitsas A, Malliou I, Anagnostopoulos A, et al. Safety and efficacy of nintedanib in idiopathic pulmonary fibrosis: a real-life observational study in Greece. Pulm Pharmacol Ther. 2018;49:61–6. https://doi.org/10.1016/j.pupt.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  37. Dobashi M, Tanaka H, Taima K, Itoga M, Ishioka Y, Shiratori T, et al. The efficacy of nintedanib in 158 patients with idiopathic pulmonary fibrosis in real-world settings: a multicenter retrospective study. SAGE Open Med. 2021;9:205031212110233. https://doi.org/10.1177/20503121211023357.

    Article  Google Scholar 

  38. Bando M, Yamauchi H, Ogura T, Taniguchi H, Watanabe K, Azuma A, et al. Clinical experience of the long-term use of pirfenidone for idiopathic pulmonary fibrosis. Intern Med. 2016;55:443–8. https://doi.org/10.2169/internalmedicine.55.5272.

    Article  CAS  PubMed  Google Scholar 

  39. • Herrmann FE, Hesslinger C, Wollin L, Nickolaus P. BI 1015550 is a PDE4B inhibitor and a clinical drug candidate for the oral treatment of idiopathic pulmonary fibrosis. Front Pharmacol. 2022;13:1–17. https://doi.org/10.3389/fphar.2022.838449. In this paper, the preclinical effects of BI1015550 in vitro and in vivo are presented; they provide the rationale for its use as antifibrotic agent in IPF patients.

    Article  CAS  Google Scholar 

  40. Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, De Alexandre RB, et al. Clinical and molecular genetics of the phosphodiesterases (pdes). Endocr Rev. 2014;35:195–233. https://doi.org/10.1210/er.2013-1053.

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1–21. https://doi.org/10.3389/fphar.2018.01048.

    Article  CAS  Google Scholar 

  42. Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev. 2023;167:220206. https://doi.org/10.1183/16000617.0206-2022.

  43. Takahashi N, Tetsuka T, Uranishi H, Okamoto T. Inhibition of the NF-κB transcriptional activity by protein kinase A. Eur J Biochem. 2002;269:4559–65. https://doi.org/10.1046/j.1432-1033.2002.03157.x.

    Article  CAS  PubMed  Google Scholar 

  44. Schafer P. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem Pharmacol. 2012;83:1583–90. https://doi.org/10.1016/j.bcp.2012.01.001.

    Article  CAS  PubMed  Google Scholar 

  45. MacKenzie SJ, Houslay MD. Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J. 2000;347:571–8. https://doi.org/10.1042/0264-6021:3470571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hernández-Flórez D, Valor L. Selective phosphodiesterase inhibitors: a new therapeutic option in inflammation and autoimmunity. Reumatol Clínica. English Ed. 2016;12:303–6. https://doi.org/10.1016/j.reuma.2016.07.011.

  47. Lehrke M, Kahles F, Makowska A, Tilstam PV, Diebold S, Marx J, et al. PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner. J Mol Cell Cardiol. 2015;81:23–33. https://doi.org/10.1016/j.yjmcc.2015.01.015.

    Article  CAS  PubMed  Google Scholar 

  48. Cortijo J, Iranzo A, Milara X, Mata M, Cerdá-Nicolás M, Ruiz-Saurí A, et al. Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br J Pharmacol. 2009;156:534–44. https://doi.org/10.1111/j.1476-5381.2008.00041.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sisson TH, Christensen PJ, Muraki Y, Dils AJ, Chibucos L, Subbotina N, et al. Phosphodiesterase 4 inhibition reduces lung fibrosis following targeted type II alveolar epithelial cell injury. Physiol Rep. 2018;6:1–15. https://doi.org/10.14814/phy2.13753.

    Article  CAS  Google Scholar 

  50. Kim SW, Lim JY, Rhee CK, Kim JH, Park CK, Kim TJ, et al. Effect of roflumilast, novel phosphodiesterase-4 inhibitor, on lung chronic graft-versus-host disease in mice. Exp Hematol. 2016;44:332-341.e4. https://doi.org/10.1016/j.exphem.2016.02.002.

    Article  CAS  PubMed  Google Scholar 

  51. Udalov S, Dumitrascu R, Pullamsetti SS, Al-Tamari HM, Weissmann N, Ghofrani HA, et al. Correction to: Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med. 2022;22:113. https://doi.org/10.1186/s12890-022-01876-5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dunkern TR, Feurstein D, Rossi GA, Sabatini F, Hatzelmann A. Inhibition of TGF-β induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase. Eur J Pharmacol. 2007;572:12–22. https://doi.org/10.1016/j.ejphar.2007.06.036.

    Article  CAS  PubMed  Google Scholar 

  53. Selige J, Hatzelmann A, Dunkern T. The differential impact of PDE4 subtypes in human lung fibroblasts on cytokine-induced proliferation and myofibroblast conversion. J Cell Physiol. 2011;226:1970–80. https://doi.org/10.1002/jcp.22529.

    Article  CAS  PubMed  Google Scholar 

  54. Tannheimer SL, Wright CD, Salmon M. Combination of roflumilast with a beta-2 adrenergic receptor agonist inhibits proinflammatory and profibrotic mediator release from human lung fibroblasts. Respir Res. 2012;13:1–11. https://doi.org/10.1186/1465-9921-13-28.

    Article  CAS  Google Scholar 

  55. Vecchio D, Acquaviva A, Arezzini B, Tenor H, Martorana PA, Gardi C. Downregulation of NOX4 expression by roflumilast N-oxide reduces markers of fibrosis in lung fibroblasts. Mediators Inflamm. 2013;2013. https://doi.org/10.1155/2013/745984.

  56. •• Richeldi L, Azuma A, Cottin V, Hesslinger C, Stowasser S, Valenzuela C, et al. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med. 2022;386:2178–87. https://doi.org/10.1056/NEJMoa2201737. This phase 2 study shows that BI1015550 is able to reduce FVC decline irrespective of background antifibrotic therapy.

    Article  CAS  PubMed  Google Scholar 

  57. Schmidli H, Gsteiger S, Roychoudhury S, O’Hagan A, Spiegelhalter D, Neuenschwander B. Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics. 2014;70:1023–32. https://doi.org/10.1111/biom.12242.

    Article  PubMed  Google Scholar 

  58. • Sgalla G, Franciosa C, Simonetti J, Richeldi L. Pamrevlumab for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs. 2020;29:771–7. https://doi.org/10.1080/13543784.2020.1773790. This paper describes the preclinical and clinical evidence on Pamrevlumab.

    Article  CAS  PubMed  Google Scholar 

  59. Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, et al. Connective tissue growth factor: from molecular understandings to drug discovery. Front Cell Dev Biol. 2020;8:1–17. https://doi.org/10.3389/fcell.2020.593269.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114:1285–94. https://doi.org/10.1083/jcb.114.6.1285.

    Article  CAS  PubMed  Google Scholar 

  61. Yanagihara T, Tsubouchi K, Gholiof M, Chong SG, Lipson KE, Zhou Q, et al. Connective-tissue growth factor contributes to TGF-b1-induced lung fibrosis. Am J Respir Cell Mol Biol. 2022;66:260–70. https://doi.org/10.1165/rcmb.2020-0504OC.

    Article  CAS  PubMed  Google Scholar 

  62. Yang H, Huang Y, Chen X, Liu J, Lu Y, Bu L, et al. The role of CTGF in the diabetic rat retina and its relationship with VEGF and TGF-β2, elucidated by treatment with CTGFsiRNA. Acta Ophthalmol. 2010;88:652–9. https://doi.org/10.1111/j.1755-3768.2009.01641.x.

    Article  CAS  PubMed  Google Scholar 

  63. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5:2–9. https://doi.org/10.1186/1755-1536-5-S1-S24.

    Article  Google Scholar 

  64. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenes Tissue Repair. 2011;4:1–11. https://doi.org/10.1186/1755-1536-4-4.

    Article  CAS  Google Scholar 

  65. Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008;19:133–44. https://doi.org/10.1016/j.cytogfr.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

  66. Pan LH, Yamauchi K, Uzuki M, Nakanishi T, Takigawa M, Inoue H, et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J. 2001;17:1220–7. https://doi.org/10.1183/09031936.01.00074101.

    Article  CAS  PubMed  Google Scholar 

  67. Sternlicht MD, Wirkner U, Bickelhaupt S, Lopez Perez R, Tietz A, Lipson KE, et al. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab. Respir Res. 2018;19:1–16. https://doi.org/10.1186/s12931-018-0720-4.

    Article  CAS  Google Scholar 

  68. Ohara Y, Chew SH, Misawa N, Wang S, Somiya D, Nakamura K, et al. Connective tissue growth factor-specific monoclonal antibody inhibits growth of malignant mesothelioma in an orthotopic mouse model. Oncotarget. 2018;9:18494–509. https://doi.org/10.18632/oncotarget.24892.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Thannickal VJ, Horowitz JC. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc. 2006;3:350–6. https://doi.org/10.1513/pats.200601-001TK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raghu G, Scholand MB, De Andrade J, Lancaster L, Mageto Y, Goldin J, et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J. 2016;47:1481–91. https://doi.org/10.1183/13993003.01030-2015.

    Article  PubMed  Google Scholar 

  71. •• Richeldi L, Fernández Pérez ER, Costabel U, Albera C, Lederer DJ, Flaherty KR, et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2020;8:25–33. https://doi.org/10.1016/S2213-2600(19)30262-0. This phase 2 trial suggests that pamrevlumab is safe and well tolerated and efficiacious in reducing FVC decline in patients with IPF.

    Article  CAS  PubMed  Google Scholar 

  72. Pepys MB. The pentraxins 1975–2018: Serendipity, diagnostics and drugs. Front Immunol. 2018;9:1–18. https://doi.org/10.3389/fimmu.2018.02382.

    Article  CAS  Google Scholar 

  73. Pilling D, Gomer RH. The development of serum amyloid p as a possible therapeutic. Front Immunol. 2018;9:1–10. https://doi.org/10.3389/fimmu.2018.02328.

    Article  CAS  Google Scholar 

  74. Pilling D, Gomer RH. Persistent lung inflammation and fibrosis in serum amyloid P component (Apcs-/-) knockout mice. PLoS ONE. 2014;9:29–33. https://doi.org/10.1371/journal.pone.0093730.

    Article  CAS  Google Scholar 

  75. Basturk T, Ojalvo D, Mazi EE, Hasbal NB, Ozagari AA, Ahbap E, et al. Pentraxin-2 is associated with renal fibrosis in patients undergoing renal biopsy. Clinics. 2020;75:1–5. https://doi.org/10.6061/clinics/2020/e1809.

    Article  Google Scholar 

  76. Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL, Peng X, et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. Int J Biochem Cell Biol. 2011;43:154–62. https://doi.org/10.1016/j.biocel.2010.10.013.

    Article  CAS  PubMed  Google Scholar 

  77. Verna EC, Patel J, Bettencourt R, Nguyen P, Hernandez C, Valasek MA, et al. Novel association between serum pentraxin-2 levels and advanced fibrosis in well-characterised patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2015;42:582–90. https://doi.org/10.1111/apt.13292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen W, Karhadkar TR, Ryu C, Herzog EL, Gomer RH. Reduced sialylation and bioactivity of the antifibrotic protein serum amyloid p in the sera of patients with idiopathic pulmonary fibrosis. ImmunoHorizons. 2020;4:352–62. https://doi.org/10.4049/immunohorizons.2000043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Castaño AP, Lin SL, Surowy T, Nowlin BT, Turlapati SA, Patel T, et al. Serum amyloid P inhibits fibrosis through FcγR-dependent monocyte-macrophage regulation in vivo. Sci Transl Med. 2009;5:5ra13. https://doi.org/10.1126/scitranslmed.3000111.

  80. Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007;179:4035–44. https://doi.org/10.4049/jimmunol.179.6.4035.

    Article  CAS  PubMed  Google Scholar 

  81. Murray LA, Rosada R, Moreira AP, Joshi A, Kramer MS, Hesson DP, et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages. PLoS ONE. 2010;5:1–9. https://doi.org/10.1371/journal.pone.0009683.

    Article  CAS  Google Scholar 

  82. Tzouvelekis A, Tzilas V, Antoniou KM, Bouros D. Human pentraxin 2 protein treatment for IPF. Lancet Respir Med. 2019;7:640–1. https://doi.org/10.1016/S2213-2600(19)30173-0.

    Article  PubMed  Google Scholar 

  83. Raghu G, van den Blink B, Hamblin MJ, Brown AW, Golden JA, Ho LA, et al. Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis. JAMA. 2018;319:2299. https://doi.org/10.1001/jama.2018.6129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Raghu G, Hamblin MJ, Brown AW, Golden JA, Ho LA, Wijsenbeek MS, et al. Long-term evaluation of the safety and efficacy of recombinant human pentraxin-2 (rhPTX-2) in patients with idiopathic pulmonary fibrosis (IPF): an open-label extension study. Respir Res. 2022;23:1–12. https://doi.org/10.1186/s12931-022-02047-0.

    Article  CAS  Google Scholar 

  85. Raghu G, van den Blink B, Hamblin MJ, Brown AW, Golden JA, Ho LA, et al. Long-term treatment with recombinant human pentraxin 2 protein in patients with idiopathic pulmonary fibrosis: an open-label extension study. Lancet Respir Med. 2019;7:657–64. https://doi.org/10.1016/S2213-2600(19)30172-9.

    Article  CAS  PubMed  Google Scholar 

  86. Olschewski H, Rose F, Schermuly R, Ghofrani HA, Enke B, Olschewski A, et al. Prostacyclin and its analogues in the treatment of pulmonary hypertension. Pharmacol Ther. 2004;102:139–53. https://doi.org/10.1016/j.pharmthera.2004.01.003.

    Article  CAS  PubMed  Google Scholar 

  87. Woodward DF, Jones RL, Narumiya S. International union of basic and clinical pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev. 2011;63:471–538. https://doi.org/10.1124/pr.110.003517.

  88. Whittle BJ, Silverstein AM, Mottola DM, Clapp LH. Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP 1 and EP 2 agonist. Biochem Pharmacol. 2012;84:68–75. https://doi.org/10.1016/j.bcp.2012.03.012.

    Article  CAS  PubMed  Google Scholar 

  89. Nikam VS, Wecker G, Schermuly R, Rapp U, Szelepusa K, Seeger W, et al. Treprostinil inhibits the adhesion and differentiation of fibrocytes via the cyclic adenosine monophosphate-dependent and ras-proximate protein-dependent inactivation of extracellular regulated kinase. Am J Respir Cell Mol Biol. 2011;45:692–703. https://doi.org/10.1165/rcmb.2010-0240OC.

    Article  CAS  PubMed  Google Scholar 

  90. Lambers C, Roth M, Jaksch P, Muraközy G, Tamm M, Klepetko W, et al. Treprostinil inhibits proliferation and extracellular matrix deposition by fibroblasts through cAMP activation. Sci Rep. 2018;8:1–10. https://doi.org/10.1038/s41598-018-19294-1.

    Article  CAS  Google Scholar 

  91. Roberts MJ, May LT, Keen AC, Liu B, Lam T, Charlton SJ, et al. Inhibition of the proliferation of human lung fibroblasts by prostacyclin receptor agonists is linked to a sustained camp signal in the nucleus. Front Pharmacol. 2021;12:1–14. https://doi.org/10.3389/fphar.2021.669227.

    Article  CAS  Google Scholar 

  92. Nikitopoulou I, Manitsopoulos N, Kotanidou A, Tian X, Petrovic A, Magkou C, et al. Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling, and fibrosis in mice. Pulm Circ. 2019;9. https://doi.org/10.1177/2045894019881954.

  93. Zmajkovicova K, Menyhart K, Bauer Y, Studer R, Renault B, Schnoebelen M, et al. The antifibrotic activity of prostacyclin receptor agonism is mediated through inhibition of YAP/TAZ. Am J Respir Cell Mol Biol. 2019;60:578–91. https://doi.org/10.1165/rcmb.2018-0142OC.

    Article  CAS  PubMed  Google Scholar 

  94. Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, et al. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med. 2009;206:535–48. https://doi.org/10.1084/jem.20082293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Napolitani G, Acosta-Rodriguez EV, Lanzavecchia A, Sallusto F. Prostaglandin E2 enhances Th17 responses via modulation of IL-17 and IFN-γ production by memory CD4+ T cells. Eur J Immunol. 2009;39:1301–12. https://doi.org/10.1002/eji.200838969.

    Article  CAS  PubMed  Google Scholar 

  96. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nat Med. 2009;15:633–40. https://doi.org/10.1038/nm.1968.

    Article  CAS  PubMed  Google Scholar 

  97. Simonneau G, Barst RJ, Galie N, Naeije R, Rich S, Bourge RC, et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2002;165:800–4. https://doi.org/10.1164/ajrccm.165.6.2106079.

    Article  PubMed  Google Scholar 

  98. McLaughlin VV, Benza RL, Rubin LJ, Channick RN, Voswinckel R, Tapson VF, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol. 2010;55:1915–22. https://doi.org/10.1016/j.jacc.2010.01.027.

    Article  CAS  PubMed  Google Scholar 

  99. Faria-Urbina M, Oliveira RKF, Agarwal M, Waxman AB. Inhaled treprostinil in pulmonary hypertension associated with lung disease. Lung. 2018;196:139–46. https://doi.org/10.1007/s00408-017-0081-7.

    Article  CAS  PubMed  Google Scholar 

  100. Bajwa AA, Shujaat A, Patel M, Thomas C, Rahaghi F, Burger CD. The safety and tolerability of inhaled treprostinil in patients with pulmonary hypertension and chronic obstructive pulmonary disease. Pulm Circ. 2017;7:82–8. https://doi.org/10.1086/689291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Waxman A, Restrepo-Jaramillo R, Thenappan T, Ravichandran A, Engel P, Bajwa A, et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med. 2021;384:325–34. https://doi.org/10.1056/NEJMoa2008470.

    Article  CAS  PubMed  Google Scholar 

  102. • Nathan SD, Waxman A, Rajagopal S, Case A, Johri S, DuBrock H, et al. Inhaled treprostinil and forced vital capacity in patients with interstitial lung disease and associated pulmonary hypertension: a post-hoc analysis of the INCREASE study. Lancet Respir Med. 2021;9:1266–74. https://doi.org/10.1016/S2213-2600(21)00165-X. This post hoc analysis shows that inhaled treprostinil reduces the decline in FVC in patients with IPF.

    Article  CAS  PubMed  Google Scholar 

  103. •• Nathan SD, Behr J, Cottin V, Lancaster L, Smith P, Deng CQ, et al. Study design and rationale for the TETON phase 3, randomised, controlled clinical trials of inhaled treprostinil in the treatment of idiopathic pulmonary fibrosis. BMJ open Respir Res. 2022;9:198–207. https://doi.org/10.1136/bmjresp-2022-001310. This paper describes the design of TETON, a study that evaluates inhaled Treprostinil as antifibrotic treatment in IPF.

    Article  Google Scholar 

  104. •• Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, et al. Idiopathic pulmonary fibrosis: disease mechanisms and drug development. Pharmacol Ther [Internet]. Elsevier Inc.; 2021;222:107798 https://doi.org/10.1016/j.pharmthera.2020.107798. This review discusses drug development and potential therapeutic targets in IPF.

  105. Shibata A, Matsumoto T, Uchida M, Yamada M, Miyamoto Y, Inada H, et al. A Novel siRNA-based oligonucleotide, TRK-250, and its efficacy for treatment of idiopathic pulmonary fibrosis (IPF). C64 Pulm Fibros Model Mech INSIGHTS. Am Thorac Soc. 2019;A5391–A5391. https://doi.org/10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A5391.

  106. Maher T, Ganslandt C, Batta R, Tornling G, Bengtsson T, Pophale H, et al. Interim results from AIR, an open-label, single arm, 36-week ph 2 trial of C21 in subjects with idiopathic pulmonary fibrosis. 1201 - idiopathic interstitial pneumonias. Eur Respir Soc. 2022;4402. https://doi.org/10.1183/13993003.congress-2022.4402.

  107. Nambiar A, Kellogg D, Justice J, Goros M, Gelfond J, Pascual R, et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. eBioMedicine. 2023;90:104481. https://doi.org/10.1016/j.ebiom.2023.104481.

  108. Vancheri C, Kreuter M, Richeldi L, Ryerson CJ, Valeyre D, Grutters JC, et al. Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis: results of the INJOURNEY trial. Am J Respir Crit Care Med. 2018;197:356–63. https://doi.org/10.1164/rccm.201706-1301OC.

    Article  CAS  PubMed  Google Scholar 

  109. Flaherty KR, Fell CD, Huggins JT, Nunes H, Sussman R, Valenzuela C, et al. Safety of nintedanib added to pirfenidone treatment for idiopathic pulmonary fibrosis. Eur Respir J. 2018;52:1–10. https://doi.org/10.1183/13993003.00230-2018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Spagnolo.

Ethics declarations

Conflict of Interest

PS reports institutional grants, personal fees, and non-financial support from PPM Services and Boehringer Ingelheim; institutional grants from Roche; personal fees from Chiesi, Novartis, Galapagos, Lupin, Pieris, Behring, AstraZeneca, Glycocore Pharma, and Menarini outside the submitted work; wife employee of AstraZeneca. EB reports personal fees from Boehringer Ingelheim and Roche outside the submitted work. EC reports personal fees from Boehringer Ingelheim outside the submitted work. GC and NB do not have any conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelli, G., Cocconcelli, E., Bernardinello, N. et al. Idiopathic Pulmonary Fibrosis: 8 Years On After Nintedanib and Pirfenidone Approval—What Is on the Horizon?. Curr Pulmonol Rep 12, 113–124 (2023). https://doi.org/10.1007/s13665-023-00315-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-023-00315-y

Keywords

Navigation