Skip to main content
Log in

Optimizing Thermomechanical Processing Routes to Achieve Desired Grain Size in SS 304 Using Response Surface Methodology

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Controlling grain size in stainless steel 304 (SS304) is vital for tailoring its properties for specific applications. In this study, we have employed response surface methodology (RSM) to optimize the processing routes to achieve the desired grain size in SS304 through a combination of cold rolling and annealing. By utilizing the face-centered central composite design of RSM, experimental runs were generated, considering % cold rolling and annealing time as the input factors. Subsequently, based on the experimental runs of RSM, SS304 was subjected to cold rolling to a different extent, followed by annealing at a constant temperature for varying durations. As a result of variation in thermomechanical treatment, steels with various grain sizes were developed which is treated as the output of the experimental runs. An analysis of variance (ANOVA) was conducted on the experimental data. Findings show a strong correlation between SS304 grain size, cold rolling reduction, and annealing duration. The proposed model precisely predicts grain size evolution, aiding effective thermomechanical processing optimization which could be useful for various thermomechanical processing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871–1881 (2003)

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881–981 (2006)

    Article  CAS  Google Scholar 

  3. M. Toofaninejad, M.N. Ahmadabadi, Effect of equal channel angular pressing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. Adv. Mater. Res. 829, 86–90 (2014)

    Article  Google Scholar 

  4. A.P. Zhilyaev, G.V. Nurislamova, B.-K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753–765 (2003)

    Article  CAS  Google Scholar 

  5. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39, 1221–1227 (1998)

    Article  CAS  Google Scholar 

  6. M. Tikhonova, Y. Kuzminova, A. Belyakov, R. Kaibyshev, Nanocrystalline S304H austenitic stainless steel processed by multiple forging. Rev. Adv. Mater. Sci. 31, 68–73 (2012)

    CAS  Google Scholar 

  7. K.E. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)

    Article  CAS  Google Scholar 

  8. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, EBSD study of a hot deformed austenitic stainless steel. Mater. Sci. Eng. A. 538, 236–245 (2012)

    Article  CAS  Google Scholar 

  9. S. Saadatkia, H. Mirzadeh, J.-M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater. Sci. Eng. A. 636, 196–202 (2015)

    Article  CAS  Google Scholar 

  10. G. Sun, M. Zhao, L. Du, H. Wu, Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel. Mater Charact. 184, 111674 (2022)

    Article  CAS  Google Scholar 

  11. M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, R. Mahmudi, Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel. Int. J. Plast. 160, 103502 (2023)

    Article  CAS  Google Scholar 

  12. D. Maréchal, Linkage between mechanical properties and phase transformations in a 301LN austenitic stainless steel (2011)

  13. M. Naghizadeh, H. Mirzadeh, Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res. Int. 90, 1900153 (2019)

    Article  Google Scholar 

  14. Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ Int. 53, 1224–1230 (2013)

    Article  CAS  Google Scholar 

  15. A. Järvenpää, M. Jaskari, J. Man, L.P. Karjalainen, Austenite stability in reversion-treated structures of a 301LN steel under tensile loading. Mater Charact. 127, 12–26 (2017)

    Article  Google Scholar 

  16. A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, H.S. Baghbadorani, Investigation of cold rolling variables on the formation of strain-induced martensite in 201L stainless steel. Mater. Des. 46, 49–53 (2013)

    Article  CAS  Google Scholar 

  17. A. Kisko, R.D.K. Misra, J. Talonen, L.P. Karjalainen, The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel. Mater. Sci. Eng. A. 578, 408–416 (2013). https://doi.org/10.1016/j.msea.2013.04.107

    Article  CAS  Google Scholar 

  18. M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, A. Kyröläinen, Enhanced mechanical properties through reversion in metastable austenitic stainless steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 729–744 (2009). https://doi.org/10.1007/s11661-008-9723-y

    Article  CAS  Google Scholar 

  19. V. Shrinivas, S.K. Varma, L.E. Murr, Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall. Mater. Trans. A. 26, 661–671 (1995)

    Article  Google Scholar 

  20. K. Tomimura, S. Takaki, Y. Tokunaga, Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 31, 1431–1437 (1991)

    Article  CAS  Google Scholar 

  21. S. Kheiri, H. Mirzadeh, M. Naghizadeh, Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater. Sci. Eng. A. 759, 90–96 (2019)

    Article  CAS  Google Scholar 

  22. M. Zhao, H. Wu, J. Lu, G. Sun, L. Du, Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel. Mater Charact. 194, 112360 (2022)

    Article  CAS  Google Scholar 

  23. Y. Ma, J.-E. Jin, Y.-K. Lee, A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scr. Mater. 52, 1311–1315 (2005)

    Article  CAS  Google Scholar 

  24. M. Eskandari, A. Kermanpur, A. Najafizadeh, Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metall. Mater. Trans. A. 40, 2241–2249 (2009)

    Article  Google Scholar 

  25. R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani, L.P. Karjalainen, On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel. Metall. Mater. Trans. A. 41, 3–12 (2010)

    Article  Google Scholar 

  26. G.S. Sun, L.X. Du, J. Hu, H. Xie, H.Y. Wu, R.D.K. Misra, Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment. Mater Charact. 110, 228–235 (2015)

    Article  CAS  Google Scholar 

  27. A. Jain, A. Varshney, Effect of grain size and dislocation density on the work hardening behavior of SS 304. J. Mater. Eng. Perform. 12, 1–18 (2024)

    Google Scholar 

  28. A. Di Schino, M. Barteri, J.M. Kenny, Effects of grain size on the properties of a low nickel austenitic stainless steel. J. Mater. Sci. 38, 4725–4733 (2003)

    Article  Google Scholar 

  29. A. Di Schino, J.M. Kenny, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater. Lett. 57, 3182–3185 (2003)

    Article  Google Scholar 

  30. A. Jain, A. Varshney, A critical review on deformation-induced transformation kinetics of austenitic stainless steels. Mater. Sci. Technol. 40, 75–106 (2024)

    Article  CAS  Google Scholar 

  31. A. El Hami, P. Pougnet, Embedded Mechatronic Systems 2: Analysis of Failures, Modeling, Simulation and Optimization (Elsevier, New York, 2020)

    Google Scholar 

  32. R.U. Owolabi, M.A. Usman, A.J. Kehinde, Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. J. King Saud Univ. Eng. Sci. 30, 22–30 (2018)

    Google Scholar 

  33. M.F. McGuire, Stainless Steels for Design Engineers (ASM International, London, 2008)

    Book  Google Scholar 

  34. C. Nickel, ASM Specialty Handbook (ASM International Materials Park, OH, 2000), pp.44072–44073

    Google Scholar 

  35. G.E. Dieter, D. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1976)

    Google Scholar 

  36. H. Abrams, Grain size measurement by the intercept method. Metallography. 4, 59–78 (1971)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate MANIT Bhopal for arranging the facilities to conduct my research work.

Author information

Authors and Affiliations

Authors

Contributions

Ashish Jain contributed to writing—original draft, methodology, and data curation; Abhinav Varshney was involved in writing—review.

Corresponding author

Correspondence to Ashish Jain.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the journal Metallography, Microstructure, and Analysis on Quantitative Metallography and Microstructure Modeling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Varshney, A. Optimizing Thermomechanical Processing Routes to Achieve Desired Grain Size in SS 304 Using Response Surface Methodology. Metallogr. Microstruct. Anal. (2024). https://doi.org/10.1007/s13632-024-01077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13632-024-01077-y

Keywords

Navigation