Skip to main content
Log in

Corrosion Behavior of the 6061 Al–Mg–Si Alloy in Different Soils Extracts

  • Peer Reviewed
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this work, the corrosion behavior of the 6061 Al-alloy in different temper conditions was studied in different soil extracts using electrochemical and surface monitoring techniques. The results showed that the corrosion behavior of the 6061 alloy depends on the soil extract composition, with the highest electrochemical activities related to the soil extracts with the lowest nitrate and sulfate concentrations. The 6061-T6 condition was more susceptible to corrosion than the 6061-HCR one. The results were related to the higher amounts of MgSi particles in the 6061-T6 alloy compared to the 6061-HCR. Sulfate and nitrate ions acted as corrosion inhibitor reducing the corrosion kinetics of the 6061 alloy in solutions with high concentration of chloride ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. ASM Handbook Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, 2001). http://books.google.com.hk/books?id=eC-Zt1J4oCgC

  2. J. Buha, R.N. Lumley, A.G. Crosky, K. Hono, Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Mater. 55, 3015–3024 (2007). https://doi.org/10.1016/j.actamat.2007.01.006

    Article  CAS  Google Scholar 

  3. C. Cayron, P.A. Buffat, Transmission electron microscopy study of the β′ phase (Al–Mg–Si alloys) and QC phase (Al–Cu–Mg–Si alloys): ordering mechanism and crystallographic structure. Acta Mater. 48, 2639–2653 (2000). https://doi.org/10.1016/S1359-6454(00)00057-4

    Article  CAS  Google Scholar 

  4. V. Massardier, T. Epicier, Study of influence of low copper addition and of an excess of silicon on the precipitation kinetics and on the precipitation sequence of Al–Mg2Si alloys. Mater. Sci. Forum. 396–402, 851–856 (2002). https://doi.org/10.1007/978-1-4614-7990-1

    Article  Google Scholar 

  5. M. Durazzo, P.E. Umbehaun, W.M. Torres, J.A.B. Souza, D.G. Silva, D.A. Andrade, Procedures for manufacturing an instrumented nuclear fuel element. Prog. Nucl. Energy. 113, 166–174 (2019). https://doi.org/10.1016/j.pnucene.2019.01.021

    Article  CAS  Google Scholar 

  6. M. Durazzo, J.A.B. Souza, E.F.U. de Carvalho, H.G. Riella, Effect of porosity on the manufacturing of U3O8-Al dispersion fuel plates. Prog. Nucl. Energy. 99, 49–58 (2017). https://doi.org/10.1016/j.pnucene.2017.05.001

    Article  CAS  Google Scholar 

  7. M.X. Milagre, U. Donatus, R. Maria, P. Silva, J. Victor, S. Araujo, R.M. Souto, I. Costa, Galvanic coupling effects on the corrosion behavior of the 6061 aluminum alloy used in research nuclear reactors. J. Nucl. Mater. 541, 152440 (2020). https://doi.org/10.1016/j.jnucmat.2020.152440

    Article  CAS  Google Scholar 

  8. M.X. Milagre, U. Donatus, N.V. Mogili, C.S.C. Machado, J.V.S. Araujo, R.E. Klumpp, S.M.C. Fernandes, J.A.B. de Souza, I. Costa, Effects of picture frame technique (PFT) on the corrosion behavior of 6061 aluminum alloy. J. Nucl. Mater. 539, 152320 (2020)

    Article  CAS  Google Scholar 

  9. W.J. Schwerdtfeger, Effects of cathodic currents on the corrosion of an aluminum alloy. J. Res. Natl. Bur. Stand. Eng. Instrum. 68C, 283–296 (1964)

    Article  CAS  Google Scholar 

  10. T.A. Lowe, A.H. Koepf, Corrosion performance of aluminum culvert. Highw. Res. Rec. 56, 98–115 (1964)

    Google Scholar 

  11. S. Cheng, L. Hongxi, G. Liqun, Z. Shuquan, Corrosion behavior of LY11 aluminum alloy in soil. Trans. Nonferrous Met. Soc. China. 9, 796–798 (1999)

    CAS  Google Scholar 

  12. F. Yan, X. Wang, X. Li, C. Wang, B. Jiang, Corrosion behavior of Al-Cu-RE (Re = La, Ce) alloy joints in alkaline soil extract. Int. J. Electrochem. Sci. 15, 8012–8025 (2020). https://doi.org/10.20964/2020.08.07

    Article  CAS  Google Scholar 

  13. F. Yan, X. Wang, X. Wang, X. Li, C. Wang, Effect of shot peening and pre-oxidation duplex treatment on electrochemical corrosion behavior of Al alloy in alkaline soil. Int. J. Electrochem. Sci. 12, 11212–11223 (2017). https://doi.org/10.20964/2017.12.60

    Article  CAS  Google Scholar 

  14. R.M. Schoueri, C. Domienikan, F. de Toledo, M.L.G. Andrade, M.A. Stanojev Pereira, R. Pugliesi, The new facility for neutron tomography of IPEN-CNEN/SP and its potential to investigate hydrogenous substances. Appl. Radiat. Isot. 84, 22–26 (2014). https://doi.org/10.1016/j.apradiso.2013.10.019

    Article  CAS  Google Scholar 

  15. R. Pugliesi, M.A.S. Pereira, M.L.G. Andrade, J.M.L. Basso, C.G. Voltani, I.C. Gonzales, Study of the fish fossil Notelops brama from Araripe-Basin Brazil by neutron tomography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 919, 68–72 (2019). https://doi.org/10.1016/j.nima.2018.12.001

    Article  CAS  Google Scholar 

  16. R.P. Ugliesi, M.L.G.A. Ndrade, M.A.S.P. Ereira, R.M.S. Choueri, M.S.D. Ias, Scientific reviews neutron imaging at the IPEN-CNEN/SP and its use in technology. Neutron News. 25, 40–44 (2014)

    Article  Google Scholar 

  17. R. Ngongang, E. Marceau, X. Carrier, C.M. Pradier, C. Methivier, J.L. Blanc, M. Carre, Surface passivation of aluminum alloy 6061 with gaseous trichlorosilane: a surface investigation. Appl. Surf. Sci. 292, 165–173 (2014). https://doi.org/10.1016/j.apsusc.2013.11.107

    Article  CAS  Google Scholar 

  18. P. Traverso, A.M. Beccaria, Effect of magnesium ions on the protective power of corrosion products formed on the surface of Al 6061 T6 alloy–10% Al2O3 (v/v) composite in solutions containing chlorides. Surf. Interface Anal. 26, 524–530 (1998). https://doi.org/10.1002/(sici)1096-9918(199806)26:7%3c524::aid-sia401%3e3.3.co;2-m

    Article  CAS  Google Scholar 

  19. N.J. Havercroft, P.M.A. Sherwood, Use of differential surface charging to separate chemical differences in x-ray photoelectron spectroscopy. Surf. Interface Anal. 29, 232–240 (2000). https://doi.org/10.1002/(SICI)1096-9918(200003)29:3%3c232::AID-SIA731%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  20. N. Saleema, D.K. Sarkar, R.W. Paynter, D. Gallant, M. Eskandarian, A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications. Appl. Surf. Sci. 261, 742–748 (2012). https://doi.org/10.1016/j.apsusc.2012.08.091

    Article  CAS  Google Scholar 

  21. S.-S. Wang, F. Yang, G.S. Frankel, Effect of altered surface layer on localized corrosion of aluminum alloy 2024. J. Electrochem. Soc. 164, C317–C323 (2017). https://doi.org/10.1149/2.1541706jes

    Article  CAS  Google Scholar 

  22. P. Du, J. Li, Y. Zhao, Y. Dai, Z. Yang, Y. Tian, Corrosion characteristics of Al alloy/galvanized-steel couple in NaCl solution. Int. J. Electrochem. Sci. 13, 11164–11179 (2018). https://doi.org/10.20964/2018.11.99

    Article  CAS  Google Scholar 

  23. B. Zaid, N. Maddache, D. Saidi, N. Souami, N. Bacha, A. Si Ahmed, Electrochemical evaluation of sodium metabisulfite as environmentally friendly inhibitor for corrosion of aluminum alloy 6061 in a chloride solution. J. Alloys Compd. 629, 188–196 (2015). https://doi.org/10.1016/j.jallcom.2015.01.003

    Article  CAS  Google Scholar 

  24. W.A. Badawy, F.M. Al-Kharafi, A.S. El-Azab, Electrochemical behaviour and corrosion inhibition of Al, Al-6061 and Al–Cu in neutral aqueous solutions. Corros. Sci. 41, 709–727 (1999). https://doi.org/10.1016/S0010-938X(98)00145-0

    Article  CAS  Google Scholar 

  25. I.W. Huang, B.L. Hurley, F. Yang, R.G. Buchheit, Dependence on temperature, pH, and Cl in the uniform corrosion of aluminum alloys 2024–T3, 6061–T6, and 7075–T6. Electrochim. Acta. 199, 242–253 (2016). https://doi.org/10.1016/j.electacta.2016.03.125

    Article  CAS  Google Scholar 

  26. Z. Zhang, Z. Xu, J. Sun, M. Zhu, Q. Yao, D. Zhang, B. Zhang, K. Xiao, J. Wu, Corrosion behaviors of AA5083 and AA6061 in artificial seawater: effects of Cl, HSO3 and temperature. Int. J. Electrochem. Sci. 15, 1218–1229 (2020). https://doi.org/10.20964/2020.02.01

    Article  CAS  Google Scholar 

  27. M.C. Reboul, B. Baroux, Metallurgical aspects of corrosion resistance of aluminium alloys. Mater. Corros. 62, 215–233 (2011). https://doi.org/10.1002/maco.201005650

    Article  CAS  Google Scholar 

  28. A. Berzins, R.T. Lowson, K.J. Mirams, Aluminium corrosion studies. III* Chloride adsorption isotherms on corroding aluminium. Aust. J. Chem. 30, 1891–1903 (1977). https://doi.org/10.1071/CH9771891

    Article  CAS  Google Scholar 

  29. R.T. Foley, T.H. Nguyen, Chemical nature of aluminum corrosion—5. Energy transfer in aluminum dissolution. Proc. Electrochem. Soc. 81–8, 27–36 (1982). https://doi.org/10.1149/1.2123881

    Article  Google Scholar 

  30. Y. Oya, Y. Honkawa, Y. Kojima, Pitting corrosion of aluminum alloy in chloride solution cantaining sulfate and sulfite ion. Zair Kankyo Corros. Eng. 63, 394–400 (2014)

    Article  CAS  Google Scholar 

  31. P. Klomjit, R.G. Buchheit, Localized corrosion inhibition of AA7075-T6 by calcium sulfate. Corrosion. 72, 486–499 (2016). https://doi.org/10.5006/1892

    Article  CAS  Google Scholar 

  32. S. Li, B.C. Church, Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution. Appl. Surf. Sci. 440, 861–872 (2018). https://doi.org/10.1016/j.apsusc.2018.01.108

    Article  CAS  Google Scholar 

  33. X. Liu, Y. Li, L. Lei, X. Wang, The effect of nitrate on the corrosion behavior of 7075–T651 aluminum alloy in the acidic NaCl solution. Mater. Corros. 72, 1478–1487 (2021). https://doi.org/10.1002/maco.202112280

    Article  CAS  Google Scholar 

  34. E. Samiento-Bustos, J.G.G. Rodriguez, J. Uruchurtu, G. Dominguez-Patiño, V.M. Salinas-Bravo, Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H2O mixture. Corros. Sci. 50, 2296–2303 (2008). https://doi.org/10.1016/j.corsci.2008.05.014

    Article  CAS  Google Scholar 

  35. I.L. Lehr, S.B. Saidman, Characterisation and corrosion protection properties of polypyrrole electropolymerised onto aluminium in the presence of molybdate and nitrate. Electrochim. Acta. 51, 3249–3255 (2006). https://doi.org/10.1016/j.electacta.2005.09.017

    Article  CAS  Google Scholar 

  36. M.H. Gao, S.D. Zhang, B.J. Yang, S. Qiu, H.W. Wang, J.Q. Wang, Prominent inhibition efficiency of sodium nitrate to corrosion of Al-based amorphous alloy. Appl. Surf. Sci. 530, 147211 (2020). https://doi.org/10.1016/j.apsusc.2020.147211

    Article  CAS  Google Scholar 

  37. J. Datta, B. Samanta, A. Jana, S. Sinha, C. Bhattacharya, S. Bandyopadhyay, Role of Cl and NO3 ions on the corrosion behavior of 20% SiCp reinforced 6061-Al metal matrix composite: a correlation between electrochemical studies and atomic force microscopy. Corros. Sci. 50, 2658–2668 (2008). https://doi.org/10.1016/j.corsci.2008.06.027

    Article  CAS  Google Scholar 

  38. S.N. Afzal, M.A.A. Shaikh, C.M. Mustafa, M. Nabi, M.Q. Ehsan, A.H. Khan, Study of aluminum corrosion in chloride and nitrate media and its inhibition by nitrite. J. Nepal Chem. Soc. 22, 26–33 (2007)

    Article  CAS  Google Scholar 

  39. C. Blanc, S. Gastaud, G. Mankowski, Mechanistic studies of the corrosion of 2024 aluminum alloy in nitrate solutions. J. Electrochem. Soc. 150, B396 (2003). https://doi.org/10.1149/1.1590327

    Article  CAS  Google Scholar 

  40. I. Milošev, B. Volarič, Conversion coatings based on rare earth nitrates and chlorides for corrosion protection of aluminum alloy 7075–T6. Corrosion. 73, 822–843 (2017). https://doi.org/10.5006/2353

    Article  CAS  Google Scholar 

  41. S. Il Pyun, S.M. Moon, The inhibition mechanism of pitting corrosion of pure aluminum by nitrate and sulfate ions in neutral chloride solution. J. Solid State Electrochem. 3, 331–336 (1999). https://doi.org/10.1007/s100080050163

    Article  Google Scholar 

  42. B.L. Treu, S. Joshi, W.R. Pinc, M.J. O’Keefe, W.G. Fahrenholtz, Characterization of localized surface states of Al 7075–T6 during deposition of cerium-based conversion coatings. J. Electrochem. Soc. 157, C282 (2010). https://doi.org/10.1149/1.3454236

    Article  CAS  Google Scholar 

  43. B.W. Samuels, K. Sotoudeh, R.T. Foley, Inhibition and acceleration of aluminum corrosion. Corrosion. 37, 92–97 (1981). https://doi.org/10.5006/1.3593852

    Article  CAS  Google Scholar 

  44. R.K. Gupta, N.L. Sukiman, K.M. Fleming, M.A. Gibson, N. Birbilis, Electrochemical behavior and localized corrosion associated with Mg2Si particles in Al and Mg alloys. ECS Electrochem. Lett. 1, 2–4 (2012). https://doi.org/10.1149/2.002201eel

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Commission for Nuclear Energy (CNEN) in Brazil for financial support for this work and for the grant of Mariana X. Milagre (SEI 01342.002357/2019-32). Acknowledgments are also due to Dr. José A. B. de Souza and Dr. Stela M. C. Fernandes of the Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN) for providing the material used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Xavier Milagre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milagre, M.X., Araujo, J.V.d., Machado, C.d. et al. Corrosion Behavior of the 6061 Al–Mg–Si Alloy in Different Soils Extracts. Metallogr. Microstruct. Anal. 11, 327–340 (2022). https://doi.org/10.1007/s13632-022-00848-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00848-9

Keywords

Navigation