Skip to main content
Log in

Electrochemical Study of 1018 Steel Exposed to Different Soils from South of México

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Physicochemical effect on the corrosion process of AISI 1018 steel exposed to five type of soils from South of México at different moisture content using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves was studied. Two soils were collected in the state of Veracruz (clay of high plasticity and silt) and three soils from the state of Campeche (sand, clay and clay-silt). Moisture values were determined by addition of 0, 20, 40 and 60 ml of deionized water in a volume of 125 cm3 of each soil. The corrosion behavior of uncoated and coated steel with a viscoelastic polymer was analyzed. Effect of damage on the coating when the steel is exposed to corrosive soils was studied. EIS evaluations indicate that 1018 steel without coating is more susceptible to corrosion in the clay at the maximum moisture content (39.7 wt. %). However, for sand the more corrosive moisture belong to 12.8 wt. %, which is not the maximum moisture, which is agree with the lower polarization resistance (52.21 ͉.cm2). Potentiodynamic polarization curves suggested that uncoated steel exposed to clay-silt from state of Campeche exhibited the higher corrosion rate (0.698 mm/year) at 53.1 wt. % moisture. Meanwhile, in the coated steel with induced damage, the higher corrosion rate was obtained in the clay (0.0018 mm/year) at 34.2 wt. % moisture. 1018 steel coated with induced damage exposed to clay displayed the higher Ecorr values, which means that clay is more susceptible to overprotection as consequence of any change in the voltages originated by moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Quej-Ake, R. Galván Martínez, A. Contreras, Materials Science Forum, 755, 153 (2013).

    Article  Google Scholar 

  2. T. Haruna, T. Shibata, R. Toyota, Corrosion Science, 39, 1935 (1997).

    Article  CAS  Google Scholar 

  3. A. Contreras, S.L. Hernández, R. Orozco Cruz, R. Galván Martínez, Materials and Design, 35, 281 (2012).

    Article  CAS  Google Scholar 

  4. J.L. Alamilla, M.A. Espinosa Medina, E. Sosa, Corrosion Science, 51, 2628 (2009).

    Article  CAS  Google Scholar 

  5. S.A. Bradford, Practical Handbook of corrosion control in soils, Third printing, Canada, Casti, (2001).

    Google Scholar 

  6. A. Benmoussat, M. Hadjel, The Journal of Corrosion Science and Engineering, 7, 1 (2005).

    Google Scholar 

  7. M.A. Espinosa Medina, E. Sosa, C. Angeles Chavez, A. Contreras, Corrosion Engineering, Science and Technology, 46, 32 (2011).

    Article  CAS  Google Scholar 

  8. L. Quej, R. Cabrera, E. Arce, J. Marin, International Journal Electrochemical Science, 8, 924 (2013).

    Google Scholar 

  9. G. González, V.J. Cortez, J.G. Ramírez, Revista Mexicana de Física, 50, 60 (2004).

    Google Scholar 

  10. X.H. Nie, X.G. Li, C.W. Du, Y.F. Cheng, J. Applied Electrochemistry, 39, 277 (2009).

    Article  CAS  Google Scholar 

  11. D. Gervasio, I. Song, J.H. Payer, J. Applied Electrochemistry, 28, 979 (1998).

    Article  CAS  Google Scholar 

  12. J.N. Murray, P.J. Moran, Corrosion, 45, 885 (1989).

    Article  CAS  Google Scholar 

  13. J.H. Fitzgerald, Materials Performance, 49, 17 (1993).

    Google Scholar 

  14. Z. Velázquez, E. Guzman, M.A. Espinosa, A. Contreras, Materials Research Society Symposium Proceedings, 1242, 69 (2010).

    Google Scholar 

  15. A. Contreras, S.L. Hernández, R. Galvan, Materials Research Society Symposium Proceedings, 1275, 43 (2011).

    Google Scholar 

  16. ASTM D-4959, Standard test method for determination of water (moisture) content of soil by directs heating, (2007).

    Google Scholar 

  17. ASTM G-200, Standard test method for measurement of oxidation-reduction potential (ORP) of soil, (2014).

    Google Scholar 

  18. B.A. Boukamp, Users Manual Equivalent Circuit, Version 4.51, Faculty of Chemical Technology, University of Twente, Netherlands (1993).

    Google Scholar 

  19. E.E. Stansbury, R.A. Buchanan: Fundamentals of Electrochemical Corrosion, United States of America: ASM International, first Edition, (2000).

    Book  Google Scholar 

  20. P. Marcus, J. Oudar, Corrosion Mechanisms in Theory and Practice, New York: Marcel Dekker, Inc., First Ed., (1995).

    Google Scholar 

  21. M.A. Pech Canul, L.P. Chi Canul, Corrosion, 55, 948 (1999).

    Article  CAS  Google Scholar 

  22. J.R. Macdonald, Impedance Spectroscopy, United States of America, John Wiley and Sons, First edition (1987).

    Google Scholar 

  23. M. Yan, J. Wang, E. Han, W. Ke, Corrosion Science, 50, 1331 (2008).

    Article  CAS  Google Scholar 

  24. H. Bi, J. Sykes, Corrosion Science, 53, 3416 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Quej-Ake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quej-Ake, L.M., Contreras, A. Electrochemical Study of 1018 Steel Exposed to Different Soils from South of México. MRS Online Proceedings Library 1766, 81–94 (2015). https://doi.org/10.1557/opl.2015.415

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.415

Navigation