Skip to main content
Log in

In Vitro Microstructure, Shape Memory, Corrosion, and Biocompatibility Characteristics of Porous Ti-51 at.%Ni-xSn Shape Memory Alloys

  • Peer Reviewed
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

To examine the impact of tin (Sn) element on the microstructure and properties of biomedical β-type Ti-Ni shape memory-based alloys, porous Ti-51 at.%Ni-xSn (x = 0, 0.225, 0.453, and 1.375) alloys were investigated. The microstructure of the Sn-modified and unmodified alloys showed two main regions, viz. Ti- and Ni-rich regions, corresponding to Ti2Ni and TiNi3 phases, plus some intermetallic compounds (Ti3Sn and Sn5Ti6) as Sn was added. The transformation temperature curves of the Ti-Ni and Ti-Ni-xSn samples displayed a multistep phase transformation (β19´ → R → β2) during the heating process. Addition of 0.225 at.% Sn to the Ti-51 at.%Ni sample improved its fracture strength, strain and shape memory behavior, polarization resistance, and antibacterial properties. On the other hand, the antibacterial properties further increased when the Sn content was increased to 0.453 and 1.375 at.%, although the mechanical and shape memory properties were degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Liu, The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater. 95, 411–427 (2015)

    Article  CAS  Google Scholar 

  2. R. Artiaga et al., DMTA study of a nickel-titanium wire. J. Therm. Anal. Calorim. 70(1), 199–207 (2002)

    Article  CAS  Google Scholar 

  3. L.J. Gibson, The mechanical behaviour of cancellous bone. J. Biomech. 18(5), 317–328 (1985)

    Article  CAS  Google Scholar 

  4. A. Nouri, P. Hodgson, C. Wen, Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 6(4), 1630–1639 (2010)

    Article  CAS  Google Scholar 

  5. A. Bansiddhi, T. Sargeant, S. Stupp, D. Dunand, Porous NiTi for bone implants: a review. Acta Biomater. 4(4), 773–782 (2008)

    Article  CAS  Google Scholar 

  6. I.P. Lipscomb and L.D. Nokes, in The Application of Shape Memory Alloys in Medicine, ed. I.P. Lipscomb, L.D.M Nokes (Wiley-VCH, Weinheim, 1996), p. 154

  7. H. Hosoda, S. Hanada, K. Inoue, T. Fukui, Y. Mishima, T. Suzuki, Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions. Intermetallics. 6(4), 291–301 (1998)

    Article  CAS  Google Scholar 

  8. S. Zlá et al., Determination of thermophysical properties of high temperature alloy IN713LC by thermal analysis. J. Therm. Anal. Calorim. 110(1), 211–219 (2012)

    Article  Google Scholar 

  9. A. Kapanen, J. Ryhänen, A. Danilov, J. Tuukkanen, Effect of nickel–titanium shape memory metal alloy on bone formation. Biomaterials. 22(18), 2475–2480 (2001)

    Article  CAS  Google Scholar 

  10. M. Geetha, A. Singh, R. Asokamani, A. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog. Mater Sci. 54(3), 397–425 (2009)

    Article  CAS  Google Scholar 

  11. K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater Sci. 50(5), 511–678 (2005)

    Article  CAS  Google Scholar 

  12. A. McKelvey, R. Ritchie, Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. J. Biomed. Mater. Res. 47(3), 301–308 (1999)

    Article  CAS  Google Scholar 

  13. J. Li, H. Yang, H. Wang, J. Ruan, Low elastic modulus titanium–nickel scaffolds for bone implants. Mater. Sci. Eng. C. 34, 110–114 (2014)

    Article  Google Scholar 

  14. D. Wever, A. Veldhuizen, J. De Vries, H. Busscher, D. Uges, J. Van Horn, Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials. 19(7), 761–769 (1998)

    Article  CAS  Google Scholar 

  15. S.D. Plant, D.M. Grant, L. Leach, Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials. 26(26), 5359–5367 (2005)

    Article  CAS  Google Scholar 

  16. O. Mockers, D. Deroze, J. Camps, Cytotoxicity of orthodontic bands, brackets and archwires in vitro. Dent. Mater. 18(4), 311–317 (2002)

    Article  CAS  Google Scholar 

  17. J. Ryhänen et al., In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: Muscle and perineural tissue responses and encapsule membrane thickness. J. Biomed. Mater. Res. 41(3), 481–488 (1998)

    Article  Google Scholar 

  18. T. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications. Mater. Sci. Eng. A. 273, 149–160 (1999)

    Article  Google Scholar 

  19. P.J.S. Buenconsejo, H.Y. Kim, S. Miyazaki, Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater. 57(8), 2509–2515 (2009)

    Article  CAS  Google Scholar 

  20. P.J.S. Buenconsejo, H.Y. Kim, S. Miyazaki, Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr. Mater. 64(12), 1114–1117 (2011)

    Article  CAS  Google Scholar 

  21. H.Y. Kim, T. Fukushima, P.J.S. Buenconsejo, T.-H. Nam, S. Miyazaki, Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater. Sci. Eng. A. 528(24), 7238–7246 (2011)

    Article  CAS  Google Scholar 

  22. X. Wu, Q. Peng, J. Zhao, J. Lin, Effect of Sn Content on the Corrosion Behavior of Ti-based Biomedical Amorphous Alloys. Int. J. Electrochem. Sci. 10, 2045–2054 (2015)

    CAS  Google Scholar 

  23. H. Bakhsheshi-Rad et al., Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 53, 283–292 (2014)

    Article  CAS  Google Scholar 

  24. G. Argade, K. Kandasamy, S. Panigrahi, R. Mishra, Corrosion behavior of a friction stir processed rare-earth added magnesium alloy. Corros. Sci. 58, 321–326 (2012)

    Article  CAS  Google Scholar 

  25. N. Iqbal et al., Characterization and biological evaluation of silver containing fluoroapatite nanoparticles prepared through microwave synthesis. Ceram. Int. 41(5), 6470–6477 (2015)

    Article  CAS  Google Scholar 

  26. J. Mentz et al., Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures. Mater. Sci. Eng. A. 491(1), 270–278 (2008)

    Article  Google Scholar 

  27. B. Yuan, X. Zhang, C. Chung, M. Zhu, The effect of porosity on phase transformation behavior of porous Ti–50.8 at.% Ni shape memory alloys prepared by capsule-free hot isostatic pressing. Mater. Sci. Eng. A. 438, 585–588 (2006)

    Article  Google Scholar 

  28. P. Su, S. Wu, The four-step multiple stage transformation in deformed and annealed Ti 49 Ni 51 shape memory alloy. Acta Mater. 52(5), 1117–1122 (2004)

    Article  CAS  Google Scholar 

  29. J. Gutiérrez-Moreno, Y. Guo, K. Georgarakis, A. Yavari, G. Evangelakis, C.E. Lekka, The role of Sn doping in the β-type Ti–25at% Nb alloys: Experiment and ab initio calculations. J. Alloys Compd. 615, S676–S679 (2014)

    Article  Google Scholar 

  30. N. Vellios, P. Tsakiropoulos, The role of Sn and Ti additions in the microstructure of Nb–18Si base alloys. Intermetallics. 15(12), 1518–1528 (2007)

    Article  CAS  Google Scholar 

  31. I. Gorna et al., Alloys of the Ti-Si-Sn system (titanium corner): phase equilibria, structure, and mechanical properties. Powder Metall. Met. Ceram. 50(7–8), 452–461 (2011)

    Article  CAS  Google Scholar 

  32. M.K. Ibrahim, E. Hamzah, S.N. Saud, E. Nazim, N. Iqbal, A. Bahador, Effect of Sn additions on the microstructure, mechanical properties, corrosion and bioactivity behaviour of biomedical Ti–Ta shape memory alloys. J. Therm. Anal. Calorim. 131(2), 1165–1175 (2018)

    Article  CAS  Google Scholar 

  33. A. Locci, R. Orru, G. Cao, Z.A. Munir, Field-activated pressure-assisted synthesis of NiTi. Intermetallics. 11(6), 555–571 (2003)

    Article  CAS  Google Scholar 

  34. B.-Y. Li, L.-J. Rong, Y.-Y. Li, V. Gjunter, A recent development in producing porous Ni–Ti shape memory alloys. Intermetallics. 8(8), 881–884 (2000)

    Article  CAS  Google Scholar 

  35. A. Terayama, N. Fuyama, Y. Yamashita, I. Ishizaki, H. Kyogoku, Fabrication of Ti–Nb alloys by powder metallurgy process and their shape memory characteristics. J. Alloys Compd. 577, S408–S412 (2013)

    Article  CAS  Google Scholar 

  36. Z. Gao, Q. Li, F. He, Y. Huang, Y. Wan, Mechanical modulation and bioactive surface modification of porous Ti–10Mo alloy for bone implants. Mater. Des. 42, 13–20 (2012)

    Article  CAS  Google Scholar 

  37. J. Xu et al., Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater. Sci. Eng. C. 46, 387–393 (2015)

    Article  CAS  Google Scholar 

  38. J. Xu et al., Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J. Alloys Compd. 645, 137–142 (2015)

    Article  CAS  Google Scholar 

  39. J. Nagels, M. Stokdijk, P.M. Rozing, Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elbow Surg. 12(1), 35–39 (2003)

    Article  Google Scholar 

  40. M. Niinomi, Metallic biomaterials. J. Artif. Organs. 11(3), 105–110 (2008)

    Article  CAS  Google Scholar 

  41. T. Ozaki, H. Matsumoto, S. Watanabe, S. Hanada, Beta Ti alloys with low Young’s modulus. Mater. Trans. 45(8), 2776–2779 (2004)

    Article  CAS  Google Scholar 

  42. Q.-M. Hu, S.-J. Li, Y.-L. Hao, R. Yang, B. Johansson, L. Vitos, Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations. Appl. Phys. Lett. 93(12), 121902 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia for providing financial support under the University Research Grant No. Q.J130000.2524.12H60 and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safaa N. Saud.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.K., Saud, S.N., Hamzah, E. et al. In Vitro Microstructure, Shape Memory, Corrosion, and Biocompatibility Characteristics of Porous Ti-51 at.%Ni-xSn Shape Memory Alloys. Metallogr. Microstruct. Anal. 11, 150–157 (2022). https://doi.org/10.1007/s13632-022-00832-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00832-3

Keywords

Navigation