Skip to main content

Advertisement

Log in

Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 0.25, 0.5 and 1.5) SMAs

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Porous Ti-Nb-xSn shape memory alloys (SMAs) are fabricated by microwave sintering technology. The microstructures exhibit needle-like morphologies, β(N) (normal straight and crossed needles along with needle-like morphology that resembles spaghetti or irregular lines with α-phases in between) as well as plate-like morphologies [normal straight plate-like morphology, α′′ and dendritic plate-like morphology, β(D)]. Increases in Sn addition significantly induce an increase in the density of the α-phase. XRD patterns exhibited three phases, namely the β-main phase with smaller intensities of α′′ and α. Further, the addition of 0.25% Sn led to more effective improvement in the intensity of the α′′-phase compared with 0.5% and 1.5% Sn addition. Additions of Sn also enhanced the fracture strength and its corresponding strain along with the shape memory effect (SME), where the best enhancement was achieved at 0.25% Sn. The corrosion rate (Ri) was reduced by rising Sn content, while both corrosion resistance and antibacterial zones were increased. The lower elastic modulus, as well as the robust mechanical properties and bioactivity, made these SMAs rather suitable for biomedical application purposes, where the low elastic modulus had value in terms of avoiding the problem of “stress shielding.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Wang, Y. Li, J. Xiong, P.D. Hodgson, and C.E. Wen, Porous TiNbZr Alloy Scaffolds for Biomedical Applications, Acta Biomater., 2009, 5(9), p 3616–3624

    Article  CAS  Google Scholar 

  2. A. Choubey, R. Balasubramaniam, and B. Basu, Effect of Replacement of V by Nb and Fe on the Electrochemical and Corrosion Behavior of Ti-6Al-4V in Simulated Physiological Environment, J. Alloy. Compd., 2004, 381(1), p 288–294

    Article  CAS  Google Scholar 

  3. Y. Tong, B. Guo, Y. Zheng, C.Y. Chung, and L.W. Ma, Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys, J. Mater. Eng. Perform., 2011, 20(4–5), p 762–766

    Article  CAS  Google Scholar 

  4. S. Lu, F. Ma, P. Liu, W. Li, X. Liu, X. Chen, K. Zhang, Q. Han, and L.-C. Zhang, Recrystallization Behavior and Super-Elasticity of a Metastable β-Type Ti-21Nb-7Mo-4Sn Alloy During Cold Rolling and Annealing, J. Mater. Eng. Perform., 2018, 27(8), p 4100–4106

    Article  CAS  Google Scholar 

  5. T. Ogawa, H. Takada, and K. Maruoka, Corrosion and Mechanical Degradation of Ni-Ti Superelastic Alloy in Neutral Fluoride Solution, J. Mater. Eng. Perform., 2018, 27, p 1–6

    Article  CAS  Google Scholar 

  6. Y. Xiao, H. Liu, D. Yi, J. Le, H. Zhou, Y. Jiang, X. Zhao, Z. Chen, J. Wang, and Q. Gao, High-Temperature Deformation Behavior of Ti-6Al-2Sn-4Zr-2Mo Alloy with Lamellar Microstructure Under Plane-Strain Compression, J. Mater. Eng. Perform., 2018, 27, p 1–14

    Article  CAS  Google Scholar 

  7. M. Long and H. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19(18), p 1621–1639

    Article  CAS  Google Scholar 

  8. D.M. Cullinane and T.A. Einhorn, Biomechanics of Bone, Princ. Bone Biol., 2002, 1, p 16–32

    Google Scholar 

  9. M. Geetha, A. Singh, R. Asokamani, and A. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54(3), p 397–425

    Article  CAS  Google Scholar 

  10. H. Kröger, P. Venesmaa, J. Jurvelin, H. Miettinen, O. Suomalainen, and E. Alhava, Bone Density at the Proximal Femur After Total Hip Arthroplasty, Clin. Orthop. Relat. Res., 1998, 352, p 66–74

    Google Scholar 

  11. T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, Beta Ti Alloys with Low Young’s Modulus, Mater. Trans., 2004, 45(8), p 2776–2779

    Article  CAS  Google Scholar 

  12. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and Mechanical Properties of New β Type Titanium Alloys for Implant Materials, Mater. Sci. Eng., A, 1998, 243(1), p 244–249

    Article  Google Scholar 

  13. T. Ahmed, A New Low Modulus, Biocompatible Titanium Alloy, in Titanium’95: Science and Technology (1996), pp. 1760–1767

  14. A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs, and T.J. FitzGerald, Mechanical and Tribological Properties and Biocompatibility of Diffusion Hardened Ti-13Nb-13Zr—A New Titanium Alloy for Surgical Implants, Medical Applications of Titanium and its Alloys: The Material and Biological Issuesed, ASTM International, West Conshohocken, 1996

    Google Scholar 

  15. J. Xu, L. Bao, A. Liu, X. Jin, Y. Tong, J. Luo, Z. Zhong, and Y. Zheng, Microstructure, Mechanical Properties and Superelasticity of Biomedical Porous NiTi Alloy Prepared by Microwave Sintering, Mater. Sci. Eng., C, 2015, 46, p 387–393

    Article  CAS  Google Scholar 

  16. D. Yang, Z. Guo, H. Shao, X. Liu, and Y. Ji, Mechanical Properties of Porous Ti-Mo and Ti-Nb Alloys for Biomedical Application by Gelcasting, Proc. Eng., 2012, 36, p 160–167

    Article  CAS  Google Scholar 

  17. M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock, and A.F. Schilling, Advances in Porous Biomaterials for Dental and Orthopaedic Applications, Materials, 2010, 3(5), p 2947–2974

    Article  CAS  Google Scholar 

  18. A. Bansiddhi, T. Sargeant, S.I. Stupp, and D. Dunand, Porous NiTi for Bone Implants: A Review, Acta Biomater., 2008, 4(4), p 773–782

    Article  CAS  Google Scholar 

  19. G. Ryan, A. Pandit, and D.P. Apatsidis, Fabrication Methods of Porous Metals for Use in Orthopaedic Applications, Biomaterials, 2006, 27(13), p 2651–2670

    Article  CAS  Google Scholar 

  20. H. Matsumoto, S. Watanabe, and S. Hanada, Beta TiNbSn Alloys with Low Young’s Modulus and High Strength, Mater. Trans., 2005, 46(5), p 1070–1078

    Article  CAS  Google Scholar 

  21. O. Khalifa, E. Wahab, and A. Tilp, The Effect of Sn and TiO2 Nano Particles Added in Electroless Ni-P Plating Solution on the Properties of Composite Coatings, Aust. J. Basic Appl. Sci., 2011, 5(6), p 136–144

    CAS  Google Scholar 

  22. M. Ghoranneviss and S. Shahidi, Effect of Various Metallic Salts on Antibacterial Activity and Physical Properties of Cotton Fabrics, J. Ind. Text., 2013, 42(3), p 193–203

    Article  CAS  Google Scholar 

  23. M. Wen, C. Wen, P. Hodgson, and Y. Li, Fabrication of Ti-Nb-Ag Alloy Via Powder Metallurgy for Biomedical Applications, Mater. Des., 2014, 56, p 629–634

    Article  CAS  Google Scholar 

  24. J. Xiong, Y. Li, X. Wang, P. Hodgson, and C.E. Wen, Mechanical Properties and Bioactive Surface Modification via Alkali-Heat Treatment of a Porous Ti-18Nb-4Sn Alloy for Biomedical Applications, Acta Biomater., 2008, 4(6), p 1963–1968

    Article  CAS  Google Scholar 

  25. D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, and F. Pyczak, Sintering Behavior and Mechanical Properties of a Metal Injection Molded Ti-Nb Binary Alloy as Biomaterial, J. Alloy. Compd., 2015, 640, p 393–400

    Article  CAS  Google Scholar 

  26. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, Microstructure and Mechanical Behavior of Metal Injection Molded Ti-Nb Binary Alloys as Biomedical Material, J. Mech. Behav. Biomed. Mater., 2013, 28, p 171–182

    Article  CAS  Google Scholar 

  27. F. Kafkas and T. Ebel, Metallurgical and Mechanical Properties of Ti-24Nb-4Zr-8Sn Alloy Fabricated by Metal Injection Molding, J. Alloy. Compd., 2014, 617, p 359–366

    Article  CAS  Google Scholar 

  28. A. Aleksanyan, S. Dolukhanyan, V.S. Shekhtman, S. Khasanov, O. Ter-Galstyan, and M. Martirosyan, Formation of Alloys in the Ti-Nb System by Hydride Cycle Method and Synthesis of Their Hydrides in Self-Propagating High-Temperature Synthesis, Int. J. Hydrogen Energy, 2012, 37(19), p 14234–14239

    Article  CAS  Google Scholar 

  29. L.W. Ma, C.Y. Chung, Y. Tong, and Y. Zheng, Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing, J. Mater. Eng. Perform., 2011, 20(4–5), p 783–786

    Article  CAS  Google Scholar 

  30. A. Terayama, N. Fuyama, Y. Yamashita, I. Ishizaki, and H. Kyogoku, Fabrication of Ti-Nb Alloys by Powder Metallurgy Process and their Shape Memory Characteristics, J. Alloy. Compd., 2013, 577, p S408–S412

    Article  CAS  Google Scholar 

  31. X. Wang, Y. Chen, L. Xu, Z. Liu, and K.-D. Woo, Effects of Sn Content on the Microstructure, Mechanical Properties and Biocompatibility of Ti-Nb-Sn/Hydroxyapatite Biocomposites Synthesized by Powder Metallurgy, Mater. Des., 2013, 49, p 511–519

    Article  CAS  Google Scholar 

  32. M. Oghbaei and O. Mirzaee, Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications, J. Alloy. Compd., 2010, 494(1), p 175–189

    Article  CAS  Google Scholar 

  33. S. Das, A. Mukhopadhyay, S. Datta, and D. Basu, Prospects of Microwave Processing: An Overview, Bull. Mater. Sci., 2009, 32(1), p 1–13

    Article  CAS  Google Scholar 

  34. R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, Full Sintering of Powdered-Metal Bodies in a Microwave Field, Nature, 1999, 399(6737), p 668–670

    Article  CAS  Google Scholar 

  35. H. Bakhsheshi-Rad, M. Idris, M. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and Bio-corrosion Properties of Quaternary Mg-Ca-Mn-Zn Alloys Compared with Binary Mg-Ca Alloys, Mater. Des., 2014, 53, p 283–292

    Article  CAS  Google Scholar 

  36. G. Argade, K. Kandasamy, S. Panigrahi, and R. Mishra, Corrosion Behavior of a Friction Stir Processed Rare-Earth Added Magnesium Alloy, Corros. Sci., 2012, 58, p 321–326

    Article  CAS  Google Scholar 

  37. N. Iqbal, M.R.A. Kadir, N.H.B. Mahmood, S. Iqbal, D. Almasi, F. Naghizadeh, H. Balaji, and T. Kamarul, Characterization and Biological Evaluation of Silver Containing Fluoroapatite Nanoparticles Prepared Through Microwave Synthesis, Ceram. Int., 2015, 41(5), p 6470–6477

    Article  CAS  Google Scholar 

  38. P.J.S. Buenconsejo, H.Y. Kim, and S. Miyazaki, Effect of Ternary Alloying Elements on the Shape Memory Behavior of Ti-Ta Alloys, Acta Mater., 2009, 57(8), p 2509–2515

    Article  CAS  Google Scholar 

  39. P.J.S. Buenconsejo, H.Y. Kim, and S. Miyazaki, Novel β-TiTaAl Alloys with Excellent Cold Workability and a Stable High-Temperature Shape Memory Effect, Scripta Mater., 2011, 64(12), p 1114–1117

    Article  CAS  Google Scholar 

  40. H.Y. Kim, T. Fukushima, P.J.S. Buenconsejo, T.-H. Nam, and S. Miyazaki, Martensitic Transformation and Shape Memory Properties of Ti-Ta-Sn High Temperature Shape Memory Alloys, Mater. Sci. Eng., A, 2011, 528(24), p 7238–7246

    Article  CAS  Google Scholar 

  41. H. Kim, Y. Ikehara, J. Kim, H. Hosoda, and S. Miyazaki, Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys, Acta Mater., 2006, 54(9), p 2419–2429

    Article  CAS  Google Scholar 

  42. Y. Chai, H. Kim, H. Hosoda, and S. Miyazaki, Self-Accommodation in Ti-Nb Shape Memory Alloys, Acta Mater., 2009, 57(14), p 4054–4064

    Article  CAS  Google Scholar 

  43. J.L. Murray, The Nb-Ti (Niobium-Titanium) System, Bull. Alloy Phase Diagr., 1981, 2(1), p 55–61

    Article  Google Scholar 

  44. H.Y. Kim and S. Miyazaki, Martensitic Transformation and Superelastic Properties of Ti-Nb Base Alloys, Mater. Trans., 2015, 56(5), p 625–634

    Article  CAS  Google Scholar 

  45. Y. Guo, beta-bcc and Amorphous Ti-Based Biocompatible Alloys for Human Body Implants, Université Grenoble Alpes, 2014

  46. B. Sharma, S.K. Vajpai, and K. Ameyama, Microstructure and Properties of Beta Ti-Nb Alloy Prepared by Powder Metallurgy Route Using Titanium Hydride Powder, J. Alloy. Compd., 2016, 656, p 978–986

    Article  CAS  Google Scholar 

  47. A. Nouri, J. Lin, Y. Li, Y. Yamada, P. Hodgson, C. Wen, Microstructure Evolution of Ti-Sn-Nb Alloy Prepared by Mechanical Alloying, in Materials Forum (CD-ROM), 2007, Institute of Materials Engineering Australasia, pp. 64–70

  48. Q.-M. Hu, S.-J. Li, Y.-L. Hao, R. Yang, B. Johansson, and L. Vitos, Phase Stability and Elastic Modulus of Ti Alloys Containing Nb, Zr, and/or Sn from First-Principles Calculations, Appl. Phys. Lett., 2008, 93(12), p 121902

    Article  CAS  Google Scholar 

  49. Y. Guo, K. Georgarakis, Y. Yokoyama, and A. Yavari, On the Mechanical Properties of TiNb Based Alloys, J. Alloy. Compd., 2013, 571, p 25–30

    Article  CAS  Google Scholar 

  50. C. Lee, C.-P. Ju, and J. Chern Lin, Structure-Property Relationship of Cast Ti-Nb Alloys, J. Oral Rehabil., 2002, 29(4), p 314–322

    Article  CAS  Google Scholar 

  51. R.P. Kolli, W.J. Joost, and S. Ankem, Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys, JOM, 2015, 67(6), p 1273–1280

    Article  CAS  Google Scholar 

  52. S. Ehtemam-Haghighi, Y. Liu, G. Cao, and L.-C. Zhang, Influence of Nb on the β → α Martensitic Phase Transformation and Properties of the Newly Designed Ti-Fe-Nb Alloys, Mater. Sci. Eng., C, 2016, 60, p 503–510

    Article  CAS  Google Scholar 

  53. N. Vellios and P. Tsakiropoulos, The Role of Sn and Ti Additions in the Microstructure of Nb-18Si Base Alloys, Intermetallics, 2007, 15(12), p 1518–1528

    Article  CAS  Google Scholar 

  54. I. Gorna, M. Bulanova, K. Valuiska, M. Bega, O.Y. Koval, A. Kotko, Y.I. Evich, and S. Firstov, Alloys of the Ti-Si-Sn System (Titanium Corner): Phase Equilibria, Structure, and Mechanical Properties, Powder Metall. Met. Ceram., 2011, 50(7–8), p 452–461

    Article  CAS  Google Scholar 

  55. M. Kato and H.R. Pak, Thermodynamics of Stress-Induced First-Order Phase Transformations in Solids, Phys. Status Solidi B, 1984, 123(2), p 415–424

    Article  CAS  Google Scholar 

  56. T.T. Sasaki, B.C. Hornbuckle, R.D. Noebe, G.S. Bigelow, M.L. Weaver, and G.B. Thompson, Effect of Aging on Microstructure and Shape Memory Properties of a Ni-48Ti-25Pd (At. Pct) Alloy, Metall. Mater. Trans. A, 2013, 44(3), p 1388–1400

    Article  CAS  Google Scholar 

  57. J. Gutiérrez-Moreno, Y. Guo, K. Georgarakis, A. Yavari, G. Evangelakis, and C.E. Lekka, The Role of Sn Doping in the β-Type Ti-25 at.% Nb Alloys: Experiment and Ab Initio Calculations, J. Alloy. Compd., 2014, 615, p S676–S679

    Article  CAS  Google Scholar 

  58. J. Nagels, M. Stokdijk, and P.M. Rozing, Stress Shielding and Bone Resorption in Shoulder Arthroplasty, J. Shoulder Elbow Surg., 2003, 12(1), p 35–39

    Article  Google Scholar 

  59. M. Niinomi, Metallic Biomaterials, J. Artif. Organs, 2008, 11(3), p 105–110

    Article  CAS  Google Scholar 

  60. X. Wu, Q. Peng, J. Zhao, and J. Lin, Effect of Sn Content on the Corrosion Behavior of Ti-Based Biomedical Amorphous Alloys, Int. J. Electrochem. Sci., 2015, 10, p 2045–2054

    CAS  Google Scholar 

  61. S.M. Amininezhad, A. Rezvani, M. Amouheidari, S.M. Amininejad, and S. Rakhshani, The Antibacterial Activity of SnO2 Nanoparticles Against Escherichia coli and Staphylococcus aureus, Zahedan J. Res. Med. Sci., 2015, 17(9), p e1053

    Article  CAS  Google Scholar 

  62. P. Kamaraj, R. Vennila, M. Arthanareeswari, and S. Devikala, Biological Activities of Tin Oxide Nanoparticles Synthesized Using Plant Extract, Pharm. Pharm. Sci., 2014, 3, p 338–382

    Google Scholar 

  63. L.H. Yun Lu, Y. Hirakawa, and H. Sato, Antibacterial Activity of TiO2/Ti Composite Photocatalyst Films Treated by Ultrasonic Cleaning, Adv. Mater. Phys. Chem., 2012, 2, p 9–12

    Article  CAS  Google Scholar 

  64. Y.S. Kim, E.S. Park, S. Chin, G.-N. Bae, and J. Jurng, Antibacterial Performance of TiO2 Ultrafine Nanopowder Synthesized by a Chemical Vapor Condensation Method: Effect of Synthesis Temperature and Precursor Vapor Concentration, Powder Technol., 2012, 215, p 195–199

    Article  CAS  Google Scholar 

  65. Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, Corrosion Resistance and Biocompatibility of Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng., A, 2005, 398(1), p 28–36

    Article  CAS  Google Scholar 

  66. R. Ahmad and M. Sardar, TiO2 Nanoparticles as an Antibacterial Agents Against E. coli, Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2(8), p 3569–3574

    Google Scholar 

  67. G. Ramírez, S. Rodil, H. Arzate, S. Muhl, and J. Olaya, Niobium Based Coatings for Dental Implants, Appl. Surf. Sci., 2011, 257(7), p 2555–2559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia for providing the financial support under the University Research Grant No. Q.J130000.2524.12H60 and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa K. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.K., Hamzah, E. & Saud, S.N. Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 0.25, 0.5 and 1.5) SMAs. J. of Materi Eng and Perform 28, 382–393 (2019). https://doi.org/10.1007/s11665-018-3776-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3776-x

Keywords

Navigation