Skip to main content
Log in

Studies of Low-Temperature Sensitization after Sub-Surface Damage Evolution in Austenitic Stainless Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The specimens of austenitic stainless steels were machined to different strain rates (105 s−1, 1050 s−1, 1500 s−1, 2100 s−1). These specimens were subjected to low-temperature sensitization (LTS) heat treatment. The LTS treatment was carried out at 475℃ and 575℃ for 24 h. Further, oxalic acid, double-loop electrochemical potentiokinetic reactivation (DL-EPR) were carried out. As-machined specimens were subjected to surface roughness measurements, optical microscopy, electron backscattered diffraction (EBSD), and Fourier transform infrared spectroscopy (FTIR) imaging measurements. Machined specimen exhibited more difficulty in passivation than the as-received specimen. The complete surface statistics were extracted. The specimens machined at a strain rate of 2100 s−1 were exhibited a higher degree of sensitization (DoS) at LTS of 575℃ and 475℃ for 24 h, respectively, than other specimens. It was found that specimens machined at a higher strain rate produced smoother roughness. FTIR imaging was used to extract the signal intensity of chromium oxide (Cr2O3) peak. Detected Cr2O3 peak/signal was strong for the specimen that exhibited lower DoS as estimated from FTIR-imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Srinivasan, V. Kain, N. Birbilis, K.V. Mani Krishna, S. Shekhawat, I. Samajdar, Near boundary gradient zone and sensitization control in austenitic stainless steel. Corros. Sci. 100, 544–555 (2015)

    Article  CAS  Google Scholar 

  2. S. Ghosh, V. Kain, Microstructural changes in AISI 304L stainless steel due to surface machining: effect on its susceptibility to chloride stress corrosion cracking. J. Nucl. Mater. 403, 62–67 (2010)

    Article  CAS  Google Scholar 

  3. A.J. Sedriks, Corrosion of Stainless Steels, 2nd edn (A Wiley-Interscience Publication, New York, 1996)

    Google Scholar 

  4. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions. Corros. Sci. 50, 1796–1806 (2008)

    Article  CAS  Google Scholar 

  5. C.O.A. Olsson, D. Landolt, Passive films on stainless steels—chemistry, structure and growth. Electrochim. Acta. 48, 1093–1104 (2003)

    Article  CAS  Google Scholar 

  6. S. Ningshen, U. Kamachi Mudali, V.K. Mittal, H.S. Khatak, Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels, Corros. Sci. 49 (2007) 481–496.

  7. T.L.S.L. Wijesinghe, D.J. Blackwood, Characterisation of passive films on 300 series stainless steels. Appl. Surf. Sci. 253, 1006–1009 (2006)

    Article  CAS  Google Scholar 

  8. N.E. Hakiki, Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel. Corros. Sci. 53, 2688–2699 (2011)

    Article  CAS  Google Scholar 

  9. L.V. Jinlong, L. Hongyun, Influence of tensile pre-strain and sensitization on passive films in AISI 304 austenitic stainless steel. Mater. Chem. Phys. 135, 973–978 (2012)

    Article  CAS  Google Scholar 

  10. J. Gravier, V. Vignal, S. Bissey-Breton, Influence of residual stress, surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere. Corros. Sci. 61, 162–170 (2012)

    Article  CAS  Google Scholar 

  11. A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, A.K. Bradbury, Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corros. Sci. 53, 3398–3415 (2011)

    Article  CAS  Google Scholar 

  12. P.S. Kumar, S.G. Acharyya, S.V.R. Rao, K. Kapoor, Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel. Mater. Sci. Eng. A. 687, 193–199 (2017)

    Article  CAS  Google Scholar 

  13. S. Wang, Y. Hu, K. Fang, W. Zhang, X. Wang, Effect of surface machining on the corrosion behaviour of 316 austenitic stainless steel in simulated PWR water. Corros. Sci. 126, 104–120 (2017). https://doi.org/10.1016/j.corsci.2017.06.019

    Article  CAS  Google Scholar 

  14. Z. Wang, M. Rahman, High speed machining, in Compr. ed. by M.S.J. Hashmi (Mater. Process, Elsevier, Ireland, 2014), pp. 221–253

    Google Scholar 

  15. S. Ghosh, V. Kain, Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel. Mater. Sci. Eng. A. 527, 679–683 (2010)

    Article  Google Scholar 

  16. M. Martin, S. Weber, C. Izawa, S. Wagner, A. Pundt, W. Theisen, Influence of machining-induced martensite on hydrogen-assisted fracture of AISI type 304 austenitic stainless steel. Int. J. Hydrogen Energy. 36, 11195–11206 (2011)

    Article  CAS  Google Scholar 

  17. A. Maurotto, D. Tsivoulas, Y. Gu, M.G. Burke, Effects of machining abuse on the surface properties of AISI 316L stainless steel. Int. J. Press. Vessel. Pip. 151, 35–44 (2017)

    Article  CAS  Google Scholar 

  18. L.R. Queiroga, G.F. Marcolino, M. Santos, G. Rodrigues, C. Eduardo dos Santos, P. Brito, Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels. Int. J. Hydrogen Energy. 44, 29027–29033 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.139

    Article  CAS  Google Scholar 

  19. S.M. Alvarez, A. Bautista, F. Velasco, Influence of strain-induced martensite in the anodic dissolution of austenitic stainless steels in acid medium. Corros. Sci. 69, 130–138 (2013)

    Article  CAS  Google Scholar 

  20. K.N. Lyon, T.J. Marrow, S.B. Lyon, Influence of milling on the development of stress corrosion cracks in austenitic stainless steel. J. Mater. Process. Technol. 218, 32–37 (2015)

    Article  CAS  Google Scholar 

  21. W. Zhang, K. Fang, Y. Hu, S. Wang, X. Wang, Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corros. Sci. 108, 173–184 (2016)

    Article  CAS  Google Scholar 

  22. J. Rajaguru, N. Arunachalam, Investigation on machining induced surface and subsurface modifications on the stress corrosion crack growth behaviour of super duplex stainless steel. Corros. Sci. 141, 230–242 (2018)

    Article  CAS  Google Scholar 

  23. N. Srinivasan, B. Sunil Kumar, V. Kain, N. Birbilis, S.S. Joshi, P.V. Sivaprasad, G. Chai, A. Durgaprasad, S. Bhattacharya, I. Samajdar, Defining the Post-machined Sub-surface in Austenitic stainless steels. Metall. Mater. Trans. A. 49, 2281–2292 (2018)

    Article  CAS  Google Scholar 

  24. G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, M. Gondek, B. Marciszko, K. Pawłowski, P.. Ba.ła Wieczerzak, The investigation of Strain-induced martensite reverse transformation in AISI 304 Austenitic stainless steel, metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 4999–5008 (2017). https://doi.org/10.1007/s11661-017-4228-1

    Article  CAS  Google Scholar 

  25. C. Celada-Casero, H. Kooiker, M. Groen, J. Post, D. San-Martin, In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements. Metals (Basel). (2017). https://doi.org/10.3390/met7070271

    Article  Google Scholar 

  26. L. Dong, X. Zhang, Y. Han, Q. Peng, P. Deng, S. Wang, Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment. Corros. Sci. 166, 108465 (2020). https://doi.org/10.1016/j.corsci.2020.108465

    Article  CAS  Google Scholar 

  27. M.J. Povich, Low temperature sensitization of type 304 stainless steel. Corrosion. 34, 60–65 (1978)

    Article  CAS  Google Scholar 

  28. C. Schmidt, R. Caligiuri, L. Eiselstein, S. Wing, D. Cubicciotti, Low temperature sensitization of type 304 stainless steel pipe weld heat affected zone. Metall. Mater. Trans. A. 18, 1483–1493 (1987)

    Article  Google Scholar 

  29. N. Parvathavarthini, R.K. Dayal, S.K. Seshadri, J.B. Gnanamoorthy, Continuous cooling and low temperature sensitization of AISI Types 316 SS and 304 SS With different degrees of cold work. J. Nucl. Mater. 168, 83–96 (1989)

    Article  CAS  Google Scholar 

  30. R. Singh, S.G. Chowdhury, G. Das, P.K. Singh, I. Chattoraj, Low temperature sensitization on the orthogonal surfaces of prior deformed AISI 304LN and aged at 673 K to 873 K (400°C to 600°C). Metall. Mater. Trans. A. 43, 986–1003 (2012)

    Article  CAS  Google Scholar 

  31. L. Hongyun, Z. Yubo, L. Hongdou, L. Jinlong, M. Yue, Characterization of the oxide films formed on low temperature sensitized AISI 321 stainless steel with different strain levels in elevated temperature borate buffer solution. J. Alloys Compd. 696, 1235–1243 (2017). https://doi.org/10.1016/j.jallcom.2016.12.107

    Article  CAS  Google Scholar 

  32. P. Muri, F.V.V. Sousa, K.S. Assis, A.C. Rocha, O.R. Mattos, I.C.P. Margarit-Mattos, Experimental procedures and sensitization diagnostics of aisi304 steel by double loop electrochemical potentiodynamic reactivation method. Electrochim. Acta. 124, 183–189 (2014). https://doi.org/10.1016/j.electacta.2013.11.044

    Article  CAS  Google Scholar 

  33. R. Joham, N.K. Sharma, K. Mondal, S. Shekhar, Low temperature cross-rolling to modify grain boundary character distribution and its effect on sensitization of SS304. J. Mater. Process. Technol. 240, 324–331 (2017). https://doi.org/10.1016/j.jmatprotec.2016.10.014

    Article  CAS  Google Scholar 

  34. R.S. Pawade, H.A. Sonawane, S.S. Joshi, An analytical model to predict specific shear energy in high-speed turning of Inconel 718. Int. J. Mach. Tools Manuf. 49, 979–990 (2009)

    Article  Google Scholar 

  35. H.A. Sonawane, S.S. Joshi, Analytical modeling of chip geometry and cutting forces in helical ball end milling of superalloy Inconel 718. CIRP J. Manuf. Sci. Technol. 3, 204–217 (2010)

    Article  Google Scholar 

  36. A.P. Majidi, M. Streicher A., , Potentiodynamic reactivation method for detecting sensitization in AISI 304 and 304L stainless steels. Corrosion. 40, 393–408 (1984)

    Article  CAS  Google Scholar 

  37. N. Srinivasan, S.S. Kumaran, D. Venkateswarlu, Effects of in-grain misorientation developments in sensitization of 304 L austenitic stainless steels. Mater. Res. Express. 6, 016551 (2018). https://doi.org/10.1088/2053-1591/aae802

    Article  CAS  Google Scholar 

  38. J.P. Davim, C. Maranhão, A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis. Mater. Des. 30, 160–165 (2009)

    Article  CAS  Google Scholar 

  39. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H. Soliman, Roughness parameters. J. Mater. Process. Technol. 123, 133–145 (2002). https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

  40. ASTM A262 practice test standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels, ASTM Int. A262-10 (2010) 1–16.

  41. S. Rahimi, T.J. Marrow, Effects of orientation, stress and exposure time on short intergranular stress corrosion crack behaviour in sensitised type 304 austenitic stainless steel. Fatigue Fract. Eng. Mater. Struct. 35, 359–373 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Srinivasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, N. Studies of Low-Temperature Sensitization after Sub-Surface Damage Evolution in Austenitic Stainless Steel. Metallogr. Microstruct. Anal. 10, 236–245 (2021). https://doi.org/10.1007/s13632-021-00736-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00736-8

Keywords

Navigation