Skip to main content
Log in

Influence of Input Parameters and Post-weld Heat Treatment on the Metallurgical and Mechanical Properties of Electron Beam-Welded Thick AISI 409 Ferritic Stainless Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

During this research work, the impact toughness and tensile strength of the electron beam-welded AISI409 plates were evaluated as a function of varied heat input (low 0.96 kJ/mm and high 1.10 kJ/mm) and after imparting post-weld heat treatment. Ferritic stainless steels are prone to enlargement in grain structure and degradation of mechanical properties on exposure to heating and cooling cycles during welding which results in deterioration in their performance. Results revealed that the base metal possessed coarse ferrite grains which got transferred into columnar and axial grains due to faster cooling rate of electron beam welding. The impact toughness of the specimens extracted from the top region of weld zone, when welded using high heat input, reduced by 46% as compared to the base metal. However, the specimens extracted from the bottom section possessed 83% higher impact toughness as compared to the top section. Further, the post-weld heat treatment resulted in refined microstructure, which increased the impact toughness by 35% and 24% for high heat input and low heat input welded joints, respectively. However, the tensile strength of the specimens extracted from the bottom section improved by 26% as compared to the base metal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.B. Cortie, History and development of ferritic stainless steels. J. South. Afr. Inst. Min. Metall. 93(7), 165–176 (1993)

    CAS  Google Scholar 

  2. D.J. Kotecki, T.A. Siewert, WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram. Weld. Res. Suppl. 71(5), 171–178 (1992)

    Google Scholar 

  3. E. Taban, A. Dhooge, E. Kaluc, Plasma arc welding of modified 12% Cr stainless steel. Mater. Manuf. Process. 24(6), 649–656 (2009). https://doi.org/10.1080/10426910902769152

    Article  CAS  Google Scholar 

  4. C. Köse, C. Topal, Laser welding of AISI 410S ferritic stainless steel. Mater. Res. Express 6(8), 1–14 (2019). https://doi.org/10.1088/2053-1591/ab26c0

    Article  CAS  Google Scholar 

  5. S.K. Gupta, A.R. Raja, M. Vashista, M.Z.K. Yusufzai, Effect of heat input on microstructure and mechanical properties in gas metal arc welding of ferritic stainless steel. Mater. Res. Express 6(3), 1–46 (2018)

    Article  Google Scholar 

  6. R.S. Vidyarthy, D.K. Dwivedi, M. Vasudevan, Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel. J. Mater. Eng. Perform. 26(3), 1391–1403 (2017). https://doi.org/10.1007/s11665-017-2538-5

    Article  CAS  Google Scholar 

  7. C.J. Van Niekerk, M. Du Toit, M.W. Erwee, Sensitization of AISI 409 ferritic stainless steel during low heat input arc welding. Weld. World 56, 55–64 (2012)

    Google Scholar 

  8. M. Du Toit, C.J. Van Niekerk, Sensitization behaviour of 11–12% Cr AISI 409 stainless steel during low heat input welding. J. South. African Inst. Min. Metall. 111(4), 243–256 (2011)

    Google Scholar 

  9. A. Doomra, S.S. Sandhu, B. Singh, Weldability studies of 18 mm thick AISI409 ferritic stainless steel plate using electron beam welding process. Int. J. Eng. 18(3), 23–28 (2020)

    CAS  Google Scholar 

  10. J. C. Lippold and D. J. Kotecki, Welding Metallurgy and Weldability of Stainless Steel, vol. 21, No. 2, Wiley, 2006

  11. A.C.T.M. Van Zwieten, J.H. Bulloch, Some considerations on the toughness properties of ferritic stainless steels-A brief review. Int. J. Press. Vessel. Pip. 56(1), 1–31 (1993). https://doi.org/10.1016/0308-0161(93)90114-9

    Article  Google Scholar 

  12. M.O.H. Amuda, S. Mridha, An overview of sensitization dynamics in ferritic stainless steel welds. Int. J. Corros. 1–9, 2011 (2011). https://doi.org/10.1155/2011/305793

    Article  CAS  Google Scholar 

  13. C. Grobler, Weldability Studies on 12% and 14% Chromium Steels, No. September, 1987

  14. E. Deleu, A. Dhooge, E. Taban, E. Kaluc, Possibilities and limitations to improve the weldability of low carbon 12Cr Ferritic stainless steel for expanded industrial applications. Weld. World 53(9–10), 198–208 (2009). https://doi.org/10.1007/BF03321131

    Article  Google Scholar 

  15. M.A. Khattak et al., Effect of welding phenomenon on the microstructure and mechanical properties of ferritic stainless steel—a review Akademia Baru. J. Adv. Res. Mater. Sci. 1(1), 13–31 (2017)

    Google Scholar 

  16. A. Kumar, G. Sharma, D.K. Dwivedi, TIG spot weld bonding of 409 L ferritic stainless steel. Int. J. Adhes. Adhes. 84, 350–359 (2018). https://doi.org/10.1016/j.ijadhadh.2018.04.012

    Article  CAS  Google Scholar 

  17. A. Doomra, S. S. Sandhu, and B. Singh, Effect of post weld heat treatment on metallurgical and mechanical properties of electron beam welded AISI 409 ferritic steel, 2020

  18. J.A. Delgado, R.R. Ambriz, R. Cuenca-Álvarez, N. Alatorre, F.F. Curiel, Heat input effect on the microstructural transformation and mechanical properties in GTAW welds of a409L ferritic stainless steel. Rev. Metal. (2016). https://doi.org/10.3989/revmetalm.068

    Article  Google Scholar 

  19. S.S. Sandhu, A.S. Shahi, Metallurgical, wear and fatigue performance of Inconel 625 weld claddings. J. Mater. Process. Technol. 233, 1–8 (2016). https://doi.org/10.1016/j.jmatprotec.2016.02.010

    Article  CAS  Google Scholar 

  20. H. Schultz, Electron Beam Technologies, Vol. 1e. compact knowledge DVS media Gmbh, Dusseldorf, 2012

  21. J. Singh, A.S. Shahi, Metallurgical, impact and fatigue performance of electron beam welded duplex stainless steel joints. J. Mater. Process. Technol. 272, 137–148 (2019). https://doi.org/10.1016/j.jmatprotec.2019.05.010

    Article  CAS  Google Scholar 

  22. A. Kumar, S.S. Sandhu, B. Singh, Effect of thermal aging on impact toughness of electron beam-welded AISI 316 stainless steel. Miner. Met. Mater. Ser. (2020). https://doi.org/10.1007/978-3-030-36628-5_16

    Article  Google Scholar 

  23. A. Kumar, B. Singh, S.S. Sandhu, Effect of thermal aging on metallurgical, tensile and impact toughness performance of electron beam welded AISI 316 SS joints. Fusion Eng. Des. 159(March), 111949 (2020). https://doi.org/10.1016/j.fusengdes.2020.111949

    Article  CAS  Google Scholar 

  24. C.L.M. Cottrell, Electron beam welding review —a critical. Mater. Des. 6, 285–291 (1985)

    Article  CAS  Google Scholar 

  25. M.S. Węglowski, S. Błacha, A. Phillips, Electron beam welding—Techniques and trends—review. Vacuum 130, 72–92 (2016). https://doi.org/10.1016/J.VACUUM.2016.05.004

    Article  Google Scholar 

  26. M. S. Węglowski, J. Dworak, and S. Błacha, Electron Beam Welding – Characteristics, no. 3, 2014

  27. A.K. Lakshminarayanan, V. Balasubramanian, Comparison of Electron Beam and Friction Stir Weldments of Modified 12 wt.% Ferritic Stainless Steel. Mater. Manuf. Process. 26(6), 37–41 (2011). https://doi.org/10.1080/10426914.2010.515643

    Article  CAS  Google Scholar 

  28. M. Tullmin, F.P.A. Robinson, C.A.O. Henningt, A. Strausst, J. Le Grange, Properties of laser-welded and electron-beam-welded ferritic stainless steel. J. South Afr. Inst. Min. Metall. 89(8), 243–249 (1989)

    CAS  Google Scholar 

  29. V. Thomas Paul, S. Saroja, S.K. Albert, T. Jayakumar, E. Rajendra Kumar, Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods. Mater. Charact. (2014). https://doi.org/10.1016/j.matchar.2014.08.013

    Article  Google Scholar 

  30. P. Havlík, P. Šohaj, J. Kouril, R. Foret, I. Dlouhý, EBW of Stainless Steels and ODS Ferritic Steel. Methods 4, 5–6 (2014)

    Google Scholar 

  31. M.O.H. Amuda, E. Akinlabi, S. Mridha, Ferritic stainless steels: metallurgy, application and weldability. Ref. Modul. Mater. Sci. Mater. Eng. (2016). https://doi.org/10.1016/b978-0-12-803581-8.04010-8

    Article  Google Scholar 

  32. M. Keskitalo, J. Sundqvist, K. Mäntyjärvi, J. Powell, A.F.H. Kaplan, The Influence of shielding gas and heat input on the mechanical properties of laser welds in ferritic stainless steel. Phys. Procedia 78(August), 222–229 (2015). https://doi.org/10.1016/j.phpro.2015.11.032

    Article  CAS  Google Scholar 

  33. M.S. Rajadurai, S. Naveen, M. Afnas, T. Arun, N. Kumar, S. Surendhar, Methods to avoid material sensitization during welding for developing corrosion resistant exhaust system. Int. J. Recent Dev. Eng. Technol. 4(7), 23–36 (2015)

    Google Scholar 

  34. S. Anttila, P. Karjalainen, S. Lantto, Mechanical properties of ferritic stainless steel welds in using type 409 and 430 filler metals. Weld. World 57(3), 335–347 (2013). https://doi.org/10.1007/s40194-013-0033-7

    Article  CAS  Google Scholar 

  35. E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties. Mater. Des. 30(4), 1193–1200 (2009). https://doi.org/10.1016/j.matdes.2008.06.030

    Article  CAS  Google Scholar 

  36. ASTM Standard E8, Standard Test Methods for Tension Testing of Metallic Materials. ASTM Int. (2013). https://doi.org/10.1520/e0008_e0008m-13a

    Article  Google Scholar 

  37. ASTM standard E 23-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM Int. (2013). https://doi.org/10.1520/e0023-12c.2

    Article  Google Scholar 

  38. ASTM standard E3-11, Standard Practice for Preparation of Metallographic Specimens. ASTM Int. 82(C), 1–15 (2016). https://doi.org/10.1520/d0638-14.1

    Article  Google Scholar 

  39. ASTM Standard E407-99, E407-99: Standard Practice for Microetching Metals and Alloys, ASTM Int., pp. 1–21, 2012

  40. M.V. Venkatesan, N. Murugan, S. Sam, S.K. Albert, Effect of heat input on macro, micro and tensile properties of flux cored arc welded ferritic stainless steel joints. Trans. Indian Inst. Met. 67(3), 375–383 (2014). https://doi.org/10.1007/s12666-013-0358-3

    Article  CAS  Google Scholar 

  41. J. C. Lippold and W. F. Savage, Solidification of Austenitic Stainless Steel Weldments : Part I—A Proposed Mechanism The distribution and morphology of delta ferrite is dependent, Weld. Res. Suppl. No. December, pp. 362 s–374 s, 1979

  42. A.K. Lakshminarayanan, V. Balasubramanian, G.M. Reddy, Microstructure and mechanical properties of electron beam-welded AISI 409 M-grade ferritic stainless steel. Int. J. Adv. Manuf. Technol. 1, 153–162 (2011). https://doi.org/10.1007/s00170-010-3044-1

    Article  Google Scholar 

  43. G.M. Reddy, K.S. Rao, Microstructure and mechanical properties of similar and dissimilar stainless steel electron beam and friction welds. Int. J. Adv. Manuf. Technol. (2009). https://doi.org/10.1007/s00170-009-2019-6

    Article  Google Scholar 

  44. H. Zheng, X. Ye, L. Jiang, B. Wang, Z. Liu, G. Wang, Study on microstructure of low carbon 12% chromium stainless steel in high temperature heat-affected zone. Mater. Des. 31(10), 4836–4841 (2010). https://doi.org/10.1016/j.matdes.2010.05.054

    Article  CAS  Google Scholar 

  45. D.A. Carrizo, J.I. Besoky, M. Luppo, C. Danon, C.P. Ramos, Characterization of an ASTM A335 P91 ferritic-martensitic steel after continuous cooling cycles at moderate rates. J. Mater. Res. Technol. 8(1), 923–934 (2019). https://doi.org/10.1016/j.jmrt.2018.07.004

    Article  CAS  Google Scholar 

  46. M C Balmforth and J C Lippold, A New Ferritic-Martensitic Stainless Steel Constitution Diagram, Weld. Res. Suppl. No. December, pp. 339–345, 2000

  47. J. Pekkarinen, V. Kujanpää, The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds. Phys. Procedia 5(PART 1), 517–523 (2010). https://doi.org/10.1016/j.phpro.2010.08.175

    Article  CAS  Google Scholar 

  48. V.L. Manugula, K.V. Rajulapati, G.M. Reddy, K.B.S. Rao, Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states. Mater. Sci. Eng., A 698, 36–45 (2017). https://doi.org/10.1016/j.msea.2017.05.036

    Article  CAS  Google Scholar 

  49. A.K. Lakshminarayanan, V. Balasubramanian, Influences of welding processes on microstructure and mechanical properties of modified 12 wt.% Cr ferritic stainless steel. Int. J. Manuf. Res. 7(4), 331–353 (2012). https://doi.org/10.1504/IJMR.2012.050100

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support and guidance provided by Mechanical Engineering Department, IK Gujral Punjab Technical University, Kapurthala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Doomra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doomra, A., Singh, B. & Sandhu, S.S. Influence of Input Parameters and Post-weld Heat Treatment on the Metallurgical and Mechanical Properties of Electron Beam-Welded Thick AISI 409 Ferritic Stainless Steel. Metallogr. Microstruct. Anal. 10, 219–235 (2021). https://doi.org/10.1007/s13632-021-00735-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00735-9

Keywords

Navigation