Skip to main content

Advertisement

Log in

Metallurgical and Mechanical Properties Variation Along the Thickness of Electron Beam Welded Ferritic Stainless Steel Joints After Postweld Heat Treatment

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The effect of the postweld heat treatment (550°C for 75 min) on the electron beam welded joints of AISI 409 thick plates was assessed in terms of tensile and impact performance. Through thickness, analysis was carried out by dividing the weld joint into three sections, i.e., top section, middle section, and bottom section. The results showed that the size of the grains got refined at the bottom. The heat treatment also led to reduction in the grain size. X-ray diffraction analysis showed the presence of martensite in the weld joint which reduced after heat treatment. The 532 MPa tensile strength was achieved after the heat treatment for the specimens extracted from the bottom of the welded plate. The impact toughness of the weld joint was 37% less than the base metal; however, impact toughness of 31J was achieved at the top section after postweld heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. C. Kose, C. Topal, Laser welding of AISI 410S ferritic stainless steel. Mater. Res. Express. 6(8), 1–14 (2019). https://doi.org/10.1088/2053-1591/ab26c0

    Article  CAS  Google Scholar 

  2. S.K. Gupta, A.R. Raja, M. Vashista, M.Z.K. Yusufzai, Effect of heat input on microstructure and mechanical properties in gas metal arc welding of ferritic stainless steel. Mater. Res. Express. 6(3), 1–46 (2019)

    Google Scholar 

  3. A. Doomra, B. Singh, S.S. Sandhu, Influence of welding parameters and post weld heat treatment on the metallurgical and mechanical properties of electron beam welded thick AISI 409 ferritic stainless steel. Metallogr. Microstruct. Anal. 10, 219–235 (2021). https://doi.org/10.1007/s13632-021-00735-9

    Article  CAS  Google Scholar 

  4. M.O.H. Amuda, S. Mridha, Grain refinement in ferritic stainless steel welds : the journey so far. Adv. Mater. Res. 86, 1165–1172 (2010). https://doi.org/10.4028/www.scientific.net/AMR.83-86.1165

    Article  CAS  Google Scholar 

  5. A.C.T.M. Van Zwieten, J.H. Bulloch, Some considerations on the toughness properties of ferritic stainless steels-a brief review. Int. J. Press. Vessel. Pip. 56(1), 1–31 (1993). https://doi.org/10.1016/0308-0161(93)90114-9

    Article  Google Scholar 

  6. R.D. Campbell, Ferritic stainless steel welding metallurgy. Key Eng. Mater. 69–70, 167–216 (1992). https://doi.org/10.4028/www.scientific.net/kem.69-70.167

    Article  Google Scholar 

  7. M.O.H. Amuda, S. Mridha, An overview of sensitization dynamics in ferritic stainless steel welds. Int. J. Corros. 2011, 1–9 (2011). https://doi.org/10.1155/2011/305793

    Article  CAS  Google Scholar 

  8. A.K. Lakshminarayanan, V. Balasubramanian, An Assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless steel joints. Mater. Des. 31(10), 4592–4600 (2010). https://doi.org/10.1016/j.matdes.2010.05.049

    Article  CAS  Google Scholar 

  9. E. Taban, E. Kaluc, A. Dhooge, Hybrid (plasma + gas tungsten arc) weldability of modified 12%Cr ferritic stainless steel. Mater. Des. 30(10), 4236–4242 (2009). https://doi.org/10.1016/j.matdes.2009.04.031

    Article  CAS  Google Scholar 

  10. A. Kumar, G. Sharma, D.K. Dwivedi, TIG spot weld bonding of 409 L ferritic stainless steel. Int. J. Adhes. Adhes. 84, 350–359 (2018). https://doi.org/10.1016/j.ijadhadh.2018.04.012

    Article  CAS  Google Scholar 

  11. M. Mukherjee, T.K. Pal, Influence of heat input on martensite formation and impact property of ferritic-austenitic dissimilar weld metals. J. Mater. Sci. Technol. 28(4), 343–352 (2012). https://doi.org/10.1016/S1005-0302(12)60066-8

    Article  CAS  Google Scholar 

  12. N. Ghosh, R. Rudrapati, P.K. Pal, G. Nandi, Parametric optimization of gas metal arc welding process by using taguchi method on ferritic stainless steel AISI409. Mater. Today: Proc. 4, 2213–2221 (2017). https://doi.org/10.1016/j.matpr.2017.02.068

    Article  Google Scholar 

  13. S.S. Sandhu, A.S.S. Shahi, Metallurgical, wear and fatigue performance of inconel 625 weld claddings. J. Mater. Process. Technol. 233, 1–8 (2016). https://doi.org/10.1016/j.jmatprotec.2016.02.010

    Article  CAS  Google Scholar 

  14. S. S. Sandhu and A. S. Shahi, “Fracture Toughness and Fatigue Behaviour of Variably Precipitated Inconel 625/AISI 304L Welds BT - Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications,” 2018, pp. 867–879

  15. A. S. Shahi and S. S. Sandhu, “Pitting Behavior of Thermally Aged Inconel 625 Weld Claddings Made Using SMAW and GMAW Process BT - Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications,” 2018, pp. 881–898

  16. M.A. Khattak et al., Effect of welding phenomenon on the microstructure and mechanical properties of ferritic stainless steel. J. Adv. Res. Mater. Sci. 1(1), 13–31 (2017)

    Google Scholar 

  17. A.K. Lakshminarayanan, K. Shanmugam, V. Balasubramanian, Effect of autogenous arc welding processes on tensile and impact properties of ferritic stainless steel joints. J. Iron Steel Res. Int. 16(1), 62–68 (2009). https://doi.org/10.1016/S1006-706X(09)60012-1

    Article  CAS  Google Scholar 

  18. R.S. Vidyarthy, D.K. Dwivedi, M. Vasudevan, Influence of M-TIG and A-TIG welding process on microstructure and mechanical behavior of 409 ferritic stainless steel. J. Mater. Eng. Perform. 26(3), 1391–1403 (2017). https://doi.org/10.1007/s11665-017-2538-5

    Article  CAS  Google Scholar 

  19. K.A. Cashell, N.R. Baddoo, Ferritic stainless steels in structural applications. Thin-Walled Struct. 83, 169–181 (2014). https://doi.org/10.1016/j.tws.2014.03.014

    Article  Google Scholar 

  20. H. Schultz, Electron beam welding machines and equipment, in Electron Beam Welding, ed. by H. Schultz (Abington Publishing, 1993), pp. 1–272

  21. C.I.M. Cottrell, Electron beam welding review -a critical. Mater. Des. 6(December), 285–291 (1985)

    Article  CAS  Google Scholar 

  22. M.S. Wȩglowski, S. Błacha, A. Phillips, Electron beam welding – techniques and trends - review. Vacuum. 130, 72–92 (2016). https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  CAS  Google Scholar 

  23. A.K. Lakshminarayanan, V. Balasubramanian, G.M. Reddy, Microstructure and mechanical properties of electron beam-welded AISI 409M-Grade ferritic stainless steel. Int. J. Adv. Manuf. Technol. 1, 153–162 (2011). https://doi.org/10.1007/s00170-010-3044-1

    Article  Google Scholar 

  24. P. Havlík, P. Šohaj, J. Kouril, R. Foret, I. Dlouhý, EBW of stainless steels and ODS ferritic steel. Methods. 4, 5–6 (2014)

    Google Scholar 

  25. M. Tullmin, F.P.A. Robinson, C.A.O. Henning, A. Strausst, J. Le Grange, Properties of laser welded and electron beam welded ferritic stainless steel. J. S. AIr. Inst. Min. Met. 89(8), 243–249 (1989)

    CAS  Google Scholar 

  26. M.O.H. Amuda, E.T. Akinlabi, S. Mridha, Ferritic stainless steels: metallurgy, application and weldability. Ref. Modul. Mater. Sci. Mater. Eng. 1–18 (2016). https://doi.org/10.1016/B978-0-12-803581-8.04010-8

  27. M. Keskitalo, J. Sundqvist, K. Mäntyjärvi, J. Powell, A.F.H. Kaplan, The influence of shielding gas and heat input on the mechanical properties of laser welds in ferritic stainless steel. Phys. Procedia. 78(August), 222–229 (2015). https://doi.org/10.1016/j.phpro.2015.11.032

    Article  CAS  Google Scholar 

  28. M.S. Rajadurai, S. Naveen, M. Afnas, T. Arun, N. Kumar, S. Surendhar, Methods to avoid material sensitization during welding for developing corrosion resistant exhaust system. Int. J. Recent Dev. Eng. Technol. 4(7), 23–36 (2015)

    Google Scholar 

  29. S. Anttila, P. Karjalainen, S. Lantto, Mechanical properties of ferritic stainless steel welds in using type 409 and 430 filler metals. Weld. World. 57(3), 335–347 (2013). https://doi.org/10.1007/s40194-013-0033-7

    Article  CAS  Google Scholar 

  30. E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Laser welding of modified 12% Cr stainless steel: strength, fatigue, toughness, microstructure and corrosion properties. Mater. Des. 30(4), 1193–1200 (2009). https://doi.org/10.1016/j.matdes.2008.06.030

    Article  CAS  Google Scholar 

  31. M. Du Toit, C.J. Van Niekerk, Sensitization behaviour of 11–12% Cr AISI 409 stainless steel during low heat input welding. J. South. African Inst. Min. Metall. 111(4), 243–256 (2011)

    Google Scholar 

  32. Severi Anttila and H. P. Heikkinen, “Structural applications of ferritic stainless steels (SAFSS),” 2014

  33. J.J. Demo, Weldable and corrosion-resistant ferritic stainless steels. Metall. Trans. 5, 2253–2256 (1974)

    Article  CAS  Google Scholar 

  34. ASTM Standard E3-11, “Standard practice for preparation of metallographic specimens,” 2016. doi: https://doi.org/10.1520/D0638-14.1

  35. N.H. Pryds, X. Huang, The effect of cooling rate on the microstructures formed during solidification of ferritic steel. Metall. Mater. Trans. A. 31A, 3155–3166 (2000)

    Article  CAS  Google Scholar 

  36. ASTM Standard E407-99, “E407-99: Standard practice for microetching metals and alloys,” ASTM Int., pp. 1–21, 2012

  37. A. Kumar, B. Singh, S.S. Sandhu, Influence of thermal aging on metallurgical, mechanical and corrosion performance of electron beam welded 18mm thick AISI 316. Fusion Eng. Des. 161, 112092 (2020). https://doi.org/10.1016/j.fusengdes.2020.112092

    Article  CAS  Google Scholar 

  38. A. Kumar, B. Singh, S.S. Sandhu, Effect of thermal aging on impact toughness of electron beam-welded AISI 316 stainless steel. Fusion Eng. Des. 159, 111949 (2020). https://doi.org/10.1016/j.fusengdes.2020.111949

    Article  CAS  Google Scholar 

  39. A. Kumar, S. S. Sandhu, and B. Singh, “Effect of thermal aging on impact toughness of electron beam-welded AISI 316 stainless steel,” in minerals, metals and materials series, 2020, pp. 169–180, doi: https://doi.org/10.1007/978-3-030-36628-5_16

  40. ASTM standard E 23-12c, “Standard test methods for notched bar impact testing of metallic materials,” 2013. doi: https://doi.org/10.1520/E0023-12C.2

  41. ASTM Standard E8, “Standard test methods for tension testing of metallic materials,” ASTM Int., pp. 1–27, 2013, doi: https://doi.org/10.1520/E0008_E0008M-13A

  42. A. Sharma, V. Kumar, S.S. Sandhu, Efects of welding speed on the microstructure, mechanical properties and corrosion resistance of the electron beam welded AISI 321 plates. Metallogr. Microstruct. Anal. 10, 184–198 (2021)

    Article  CAS  Google Scholar 

  43. A. Sharma, V. Prabhakar, S. Sandhu, Microstructural characterization and mechanical performance along the thickness of electron beam welded stabilized AISI 321 stainless steel. Metall. Mater. Eng. (2021). https://doi.org/10.30544/592

    Article  Google Scholar 

  44. A. Sharma, S. Sandhu, V. Kumar, Assessment of mechanical and metallurgical properties of thermally aged electron beam welded AISI 321 stainless steel. Adv. Mater. Res. 1160, 93–102 (2021). https://doi.org/10.4028/www.scientific.net/AMR.1160.93

    Article  Google Scholar 

  45. D.J. Kotecki, T.A. Siewert, WRC-1992 constitution diagram for stainless steel weld metals : a modification of the WRC-1988 diagram. Weld. Res. Suppl. 71(5), 171–178 (1992)

    Google Scholar 

  46. T. Mohandas, G. Madhusudhan Reddy, M. Naveed, A comparative evaluation of gas tungsten and shielded metal arc welds af a ferritic stainless steel. J Mater Process Technol. 94(2), 133–140 (1999). https://doi.org/10.1016/S0924-0136(99)00092-8

    Article  Google Scholar 

  47. M.O.H. Amuda, S. Mridha, Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds. Mater. Des. 47, 365–371 (2013). https://doi.org/10.1016/j.matdes.2012.12.008

    Article  CAS  Google Scholar 

  48. A.K. Lakshminarayanan, V. Balasubramanian, Evaluation of microstructure and mechanical properties of laser beam welded AISI 409M grade ferritic stainless steel. J. Iron Steel Res. Int. 19(1), 72–78 (2012). https://doi.org/10.1016/S1006-706X(12)60050-8

    Article  CAS  Google Scholar 

  49. A.K. Lakshminarayanan, V. Balasubramanian, Comparison of electron beam and friction stir weldments of modified 12 wt.% ferritic stainless steel. Mater. Manuf. Process. 26(6), 37–41 (2011). https://doi.org/10.1080/10426914.2010.515643

    Article  CAS  Google Scholar 

  50. M.V. Venkatesan, N. Murugan, S. Sam, S.K. Albert, Effect of heat input on macro, micro and tensile properties of flux cored arc welded ferritic stainless steel joints. Trans. Indian Inst. Met. 67(3), 375–383 (2014). https://doi.org/10.1007/s12666-013-0358-3

    Article  CAS  Google Scholar 

  51. E. Taban, A. Dhooge, E. Kaluc, Plasma arc welding of modified 12% Cr stainless steel. Mater. Manuf. Process. 24(6), 649–656 (2009). https://doi.org/10.1080/10426910902769152

    Article  CAS  Google Scholar 

  52. E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Submerged arc welding of thick ferritic martensitic 12Cr stainless steel with a variety of consumables. Sci. Technol. Weld. Join. 13(4), 327–334 (2008). https://doi.org/10.1179/174329307X213710

    Article  CAS  Google Scholar 

  53. S.S.M. Tavares, L.F.G. de Souza, T.C. de Chuvas, C.L.C. da Machado, Influence of heat treatments on the microstructure and degree of sensitization of base metal and weld of AISI 430 stainless steel. Rev. Mater. 22, 2–9 (2017). https://doi.org/10.1590/s1517-707620170005.0275

    Article  CAS  Google Scholar 

  54. A. Doomra, S.S. Sandhu, B. Singh, Effect of post weld heat treatment on metallurgical and mechanical properties of electron beam welded AISI 409 ferritic steel. Metall. Mater. Eng. 26(3), 279 (2020). https://doi.org/10.30544/545

    Article  Google Scholar 

  55. A. Doomra, B. Singh, S.S. Sandhu, Weldability studies of AISI 409 ferritic stainless steel thick plates using electron beam welding process. Int. J. Manuf. Mater. Mech. Eng. 11(2), 55–67 (2021). https://doi.org/10.4018/IJMMME.2021040104

    Article  Google Scholar 

  56. A. Doomra, S.S. Sandhu, B. Singh, Weldability studies of 18mm thick AISI409 ferritic stainless steel plate using electron beam welding process. Ann Fac Eng Hunedoara Int J Eng. 18(3), 23–28 (2020)

    CAS  Google Scholar 

  57. J. Pekkarinen, V. Kujanpää, The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds. Phys. Procedia. 5, 517–523 (2010). https://doi.org/10.1016/j.phpro.2010.08.175

    Article  CAS  Google Scholar 

  58. V.L. Manugula, K.V. Rajulapati, G.M. Reddy, K.B.S. Rao, Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states. Mater. Sci. Eng. A. 698, 36–45 (2017). https://doi.org/10.1016/j.msea.2017.05.036

    Article  CAS  Google Scholar 

  59. A.K. Lakshminarayanan, V. Balasubramanian, Influences of welding processes on microstructure and mechanical properties of modified 12 Wt.% Cr ferritic stainless steel. Int. J. Manuf. Res. 7(4), 331–353 (2012). https://doi.org/10.1504/IJMR.2012.050100

    Article  Google Scholar 

  60. E. Taban, E. Deleu, A. Dhooge, E. Kaluc, Gas metal arc welding of modified X2crnil2 ferritic stainless steel. Kov. Mater. 45(2), 67–74 (2007)

    CAS  Google Scholar 

  61. C. Thomas and R. Apps, “Weld Heat-Affected Zone Properties in AISI 409 Ferritic Stainless Steel,” in Toughness of Ferritic Stainless Steels, 2009, pp. 161–183

  62. M. Mukherjee, A. Dutta, P. Kanjilal, T.K. Pal, S. Sisodia, Enhancement of microstructural and mechanical properties by pulse mode of metal transfer in welded modified ferritic stainless steel. ISIJ Int. 55(7), 1439–1447 (2015). https://doi.org/10.2355/isijinternational.55.1439

    Article  CAS  Google Scholar 

  63. A.N. Vasileiou, M.C. Smith, J. Balakrishnan, J.A. Francis, C.J. Hamelin, The impact of transformation plasticity on the electron beam welding of thick-section ferritic steel components. Nucl. Eng. Des. 323, 309–316 (2017). https://doi.org/10.1016/j.nucengdes.2017.03.040

    Article  CAS  Google Scholar 

  64. I. A. DeArdo, “Mechanical behavior of 409 ferritic stainless steel,” McGili University Montreal, 1998

  65. E. Ranjbarnodeh, S. Hanke, S. Weiss, A. Fischer, Effect of welding parameters on the heat-affected zone of AISI409 ferritic stainless steel. Int. J. Miner. Metall. Mater. 19(10), 923–929 (2012). https://doi.org/10.1007/s12613-012-0648-5

    Article  CAS  Google Scholar 

  66. K. Bhanu Sankara Rao, K. Laha, R. Sandhya, B. Raj, Mechanical behaviour of stainless steel, ferritic steel welds and weld joints, in Weld Cracking in Ferrous Alloys (2009), pp. 153–184

  67. C.J.V.J. Van Niekerk et al., Sensitization of AISI 409 ferritic stainless steel during low heat input arc welding. Weld. World. 56(5–6), 54–64 (2012). https://doi.org/10.1007/BF03321350

    Article  Google Scholar 

  68. C. Kose, C. Topal, Effect of post weld heat treatment and heat input on the microstructure and mechanical properties of plasma arc welded AISI 410S ferritic stainless Steel. Mater. Res. Express. 6(6), 1–20 (2019). https://doi.org/10.1088/2053-1591/ab09b6

    Article  CAS  Google Scholar 

  69. E. Deleu, A. Dhooge, E. Taban, E. Kaluc, Possibilities and limitations to improve the weldability of low carbon 12Cr ferritic stainless steel for expanded industrial applications. Weld. World. 53(9–10), 198–208 (2009). https://doi.org/10.1007/BF03321131

    Article  Google Scholar 

  70. M.S. Węglowski, S. Błacha, A. Phillips, Electron beam welding-techniques and trends-review. Vacuum. 130, 72–92 (2016). https://doi.org/10.1016/J.VACUUM.2016.05.004

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the support extended by the Department of Mechanical Engineering, IKG Punjab Technical University, Kapurthala, and Sant Longowal Institute of Engineering and Technology, Longowal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Doomra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doomra, A., Sandhu, S.S. Metallurgical and Mechanical Properties Variation Along the Thickness of Electron Beam Welded Ferritic Stainless Steel Joints After Postweld Heat Treatment. Metallogr. Microstruct. Anal. 10, 795–814 (2021). https://doi.org/10.1007/s13632-021-00803-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00803-0

Keywords

Navigation