Skip to main content

Advertisement

Log in

Preliminary Assessment of Spark Plasma Sintered Nickel-Based Quaternary Superalloy

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this work, the synthesis, characterization and mechanical properties of sintered In situ Ni-based quaternary superalloy (Ni–9Fe–22Cr–10Co) were studied. All the Ni–9Fe–22Cr–10Co quaternary alloy specimens were consolidated via spark plasma sintering technique at temperature range and sintering pressure of 850–1100 °C and 50 MPa, respectively. The densification of sintered alloys was obtained through Archimedes technique while the micro-indentation hardness of the alloys was conducted using Vickers microhardness tester. The specimens were characterized using the optical microscope and scanning electron microscope equipped with energy-dispersive spectroscopy while the phase identification was carried using X-ray diffractometer. The microstructural characterization results revealed that the relative density, surface morphology as well as the micro-indentation hardness properties depend on the sintering temperature. In addition, it was observed that high sintering temperature aided grain refinement and bulk compaction of the material leading to high relative density. XRD analysis shows the formation of Ni–Fe and Co–Fe as the major phases. Generally, the densification and grain size of the alloys increased with increasing sintering temperature with optimum results obtained at a temperature of 1100 °C and sintered density of 98% while the maximum Vickers hardness value of 439.17 HV1 was recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Borkar, R. Banerjee, T. Borkar, R. Banerjee, Influence of spark plasma sintering (SPS) processing parameters on microstructure and mechanical properties of nickel. Mater. Sci. Eng. A. 618, 176–181 (2014)

    Article  CAS  Google Scholar 

  2. R. Yamanoglu, W. Bradbury, E. Karakulak, E. Olevsky, R. German, R. Yamanoglu, W. Bradbury, E. Karakulak, E. Olevsky, R. German, Characterisation of nickel alloy powders processed by spark plasma sintering. Powder Metall. 57, 380–386 (2014)

    Article  CAS  Google Scholar 

  3. M.B. Shongwe, I.M. Makena, M.M. Ramakokovhu, T. Langa, P.A. Olubambi, M.B. Shongwe, I.M. Makena, M.M. Ramakokovhu, T. Langa, P.A. Olubambi, Sintering behavior and effect of ternary additions on the microstructure and mechanical properties of Ni–Fe-based alloy. Part. Sci. Technol. 36, 643–654 (2018)

    Article  CAS  Google Scholar 

  4. B. Geddes, H. Leon, X. Huang, Superalloys: alloying and performance (Asm International, Ohio, 2010)

    Book  Google Scholar 

  5. J. Pereira, J. Zambrano, C. Afonso, V. Amigó, J. Pereira, J. Zambrano, C. Afonso, V. Amigó, Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route. Mater. Charact. 101, 159–165 (2015)

    Article  CAS  Google Scholar 

  6. A. Zavaliangos, J. Zhang, M. Krammer, J.R. Groza, A. Zavaliangos, J. Zhang, M. Krammer, J.R. Groza, Temperature evolution during field activated sintering. Mater. Sci. Eng. A. 379, 218–228 (2004)

    Article  Google Scholar 

  7. M.C. Kushan, S.C. Uzgur, Y. Uzunonat, F. Diltemiz, ALLVAC 718 Plus™ superalloy for aircraft engine applications, in Recent Advances in Aircraft Technology, InTech, (2012)

  8. S. Diouf, A. Molinari, S. Diouf, A. Molinari, Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol. 221, 220–227 (2012)

    Article  CAS  Google Scholar 

  9. M. Shongwe, M. Ramakokovhu, S. Diouf, M. Durowoju, B. Obadele, R. Sule, M. Lethabane, P. Olubambi, M. Shongwe, M. Ramakokovhu, S. Diouf, M. Durowoju, B. Obadele, R. Sule, M. Lethabane, P. Olubambi, Effect of starting powder particle size and heating rate on spark plasma sintering of FeNi alloys. J. Alloy. Compd. 678, 241–248 (2016)

    Article  CAS  Google Scholar 

  10. B.J. Babalola, N. Maledi, M.B. Shongwe, M.O. Bodunrin, B.A. Olubambi, B.J. Babalola, N. Maledi, M.B. Shongwe, M.O. Bodunrin, B.A. Olubambi, Influence of nanocrystalline nickel powder on oxidation resistance of spark plasma sintered Ni-17Cr6.5Co1.2Mo6A14W7.6Ta alloy. J. King Saud Univ. Eng. Sci. 32, 198–204 (2020)

    Google Scholar 

  11. B.J. Babalola, M.B. Shongwe, B.A. Obadele, P.A. Olubambi, B.J. Babalola, M.B. Shongwe, B.A. Obadele, P.A. Olubambi, Densification, microstructure and mechanical properties of spark plasma sintered Ni-17% Cr binary alloys. Int. J. Adv. Manuf. Technol. 101, 1573–1581 (2019)

    Article  Google Scholar 

  12. B.A. Obadele, O.O. Ige, P.A. Olubambi, B.A. Obadele, O.O. Ige, P.A. Olubambi, Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J. Alloy. Compd. 710, 825–830 (2017)

    Article  CAS  Google Scholar 

  13. O. Ogunbiyi, T. Jamiru, R. Sadiku, L. Beneke, O. Adesina, J. Fayomi, O. Ogunbiyi, T. Jamiru, R. Sadiku, L. Beneke, O. Adesina, J. Fayomi, Influence of sintering temperature on the corrosion and wear behaviour of spark plasma–sintered Inconel 738LC alloy. Int. J. Adv. Manuf. Technol. 104, 4195–4206 (2019)

    Article  Google Scholar 

  14. N. Ghosh, S. Harimkar, Consolidation and synthesis of MAX phases by spark plasma sintering (SPS): a review, Advances in science and technology of Mn+ 1axn Phases (Elsevier, Amsterdam, 2012), pp. 47–80

    Google Scholar 

  15. B.A. Obadele, Z.H. Masuku, P.A. Olubambi, B.A. Obadele, Z.H. Masuku, P.A. Olubambi, Turbula mixing characteristics of carbide powders and its influence on laser processing of stainless steel composite coatings. Powder Technol. 230, 169–182 (2012)

    Article  CAS  Google Scholar 

  16. F. Pérez-González, N. Garza-Montes-de Oca, R. Colás, F. Pérez-González, N. Garza-Montes-de Oca, R. Colás, High temperature oxidation of the Haynes 282© nickel-based superalloy. Oxid. Metals. 82, 145–161 (2014)

    Article  Google Scholar 

  17. C. Tang, F. Pan, X. Qu, B. Duan, X. He, C. Tang, F. Pan, X. Qu, B. Duan, X. He, Nickel base superalloy GH4049 prepared by powder metallurgy. J. Alloy. Compd. 474, 201–205 (2009)

    Article  CAS  Google Scholar 

  18. M.I. Makena, M.B. Shongwe, M.M. Ramakokovhu, P.A. Olubambi, M.I. Makena, M.B. Shongwe, M.M. Ramakokovhu, P.A. Olubambi, Effect of sintering parameters on densification, corrosion and wear behaviour of Ni-50Fe alloy prepared by spark plasma sintering. J. Alloy. Compd. 699, 1166–1179 (2017)

    Article  CAS  Google Scholar 

  19. O. Ogunbiyi, E. Sadiku, T. Jamiru, O. Adesina, L. Beneke, O. Ogunbiyi, E. Sadiku, T. Jamiru, O. Adesina, L. Beneke, Spark plasma sintering of Inconel 738LC: densification and microstructural characteristics. Mater. Res. Express. 6, 1065–1068 (2019)

    Article  Google Scholar 

  20. X. Song, X. Liu, J. Zhang, X. Song, X. Liu, J. Zhang, Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J. Am. Ceram. Soc. 89, 494–500 (2006)

    Article  CAS  Google Scholar 

  21. O. Ogunbiyi, T. Jamiru, E. Sadiku, L. Beneke, O. Adesina, T. Adegbola, O. Ogunbiyi, T. Jamiru, E. Sadiku, L. Beneke, O. Adesina, T. Adegbola, Microstructural characteristics and thermophysical properties of spark plasma sintered Inconel 738LC. Int. J. Adv. Manuf. Technol. 104, 1425–1436 (2019)

    Article  Google Scholar 

  22. I.M. Makena, M.B. SHongwe, M.M. Ramakokovhu, M.L. Lethabane, , I.M. Makena, M.B. SHongwe, M.M. Ramakokovhu, M.L. Lethabane, , Influence of temperature on microstructure and mechanical properties of Ni-40Fe-10Co Alloy consolidated by spark plasma sintering. Proc. Manuf. 7, 708–713 (2017)

    Google Scholar 

  23. O. Ogunbiyi, T. Jamiru, E. Sadiku, L. Beneke, O. Adesina, T. Adegbola, O. Ogunbiyi, T. Jamiru, E. Sadiku, L. Beneke, O. Adesina, T. Adegbola, Influence of sintering temperature on microstructural evolution of spark plasma sintered Inconel738LC. Proc. Manuf. 35, 1152–1157 (2019)

    Google Scholar 

  24. V. Mamedov, V. Mamedov, Spark plasma sintering as advanced PM sintering method. Powder Metall. 45, 322–328 (2002)

    Article  CAS  Google Scholar 

  25. M.B. Shongwe, S. Diouf, M.O. Durowoju, P.A. Olubambi, M.B. Shongwe, S. Diouf, M.O. Durowoju, P.A. Olubambi, Effect of sintering temperature on the microstructure and mechanical properties of Fe–30%Ni alloys produced by spark plasma sintering. J. Alloy. Compd. 649, 824–832 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olanrewaju Seun Adesina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyana, D.A., Shongwe, M.B., Teffo, M.L. et al. Preliminary Assessment of Spark Plasma Sintered Nickel-Based Quaternary Superalloy. Metallogr. Microstruct. Anal. 10, 64–73 (2021). https://doi.org/10.1007/s13632-021-00712-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00712-2

Keywords

Navigation