Skip to main content

Advertisement

Log in

Characterization of Anisotropy of Strength in API-X80 Line Pipe Welds Through Instrumented Indentation

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this work, an instrumented indentation technique with a nearly flat tip indenter was used to measure the yield strength of API-X80 line pipe weld. Using this technique, the yield strength can be estimated directly from the indentation load–displacement response. The yield strength of the weld metal was measured in the transverse (hoop) and longitudinal (long) directions of the weld, and the results indicated that the weld metal exhibits anisotropy in terms of the yield strength by as much as 100 MPa, which could lead to a non-conservative estimate when strength mismatch is considered. Conventional tensile testing obtained strength values to within 4.6% of the indentation measurements and confirmed the results. Hardness maps also show a 20 HV0.5 difference in the two directions of the weld, which supports anisotropy of yield strength. The microstructure analysis using SEM reveals a slight difference in the grain size, which partially explains the differences in properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.D. Herynk, S. Kyriakides, A. Onoufriou, H.D. Yun, Effects of the UOE/UOC pipe manufacturing processes on pipe collapse pressure. Int. J. Mech. Sci. 49(5), 533–553 (2007)

    Article  Google Scholar 

  2. M.S. Joo, D.W. Suh, H.K.D.H. Bhadeshia, Mechanical Anisotropy in Steels for Pipelines. ISIJ Int. 53(8), 1305–1314 (2013)

    Article  CAS  Google Scholar 

  3. A.M. Sage, Physical metallurgy of high strength, low alloy line pipe and pipe fitting steels. Met. Technol. 10(1), 224–233 (1983)

    Article  CAS  Google Scholar 

  4. O. Hilgert, S. Höhler, “Anisotropic hfi welded steel pipes for strain based design,” pp. 1–9, 2016.

  5. W. T., D. H. J.T. Bowker, J.A. Gianetto, G. Shen, “Ipc2006-10400 Strain-Based Designed Pipelines,” in IPC, 2006, vol. 6, pp. 1–12.

  6. Z.L. Zhang, M. Hauge, C. Thaulow, J. Odegard, A notched cross weld tensile testing method for determining true stress-strain curves for weldments. Eng. Fract. Mech. 69(3), 353–366 (2002)

    Article  Google Scholar 

  7. W.D. Lockwood, B. Tomaz, A.P. Reynolds, Mechanical response of friction stir welded AA2024: experiment and modeling. Mater. Sci. Eng. A 323, 348–353 (2002)

    Article  Google Scholar 

  8. J. Yan, M. A. Sutton, A. P. Reynolds, S. Adeeb, D. Horsley, Characterization of heterogeneous response of pipeline steel weld using digital image correlation, no. October 2015, 2006.

  9. K.M. Saranath, A. Sharma, M. Ramji, Zone wise local characterization of welds using digital image correlation technique. Opt. Lasers Eng. 63, 30–42 (2014)

    Article  Google Scholar 

  10. G. Xiao et al., Determination of power hardening elastoplastic constitutive relation of metals through indentation tests with plural indenters. Mech. Mater. 138, 103173 (2019)

    Article  Google Scholar 

  11. X. Hernot, O. Bartier, G. Mauvoisin, J.M. Collin, A universal formulation for indentation whatever the indenter geometry. Mech. Mater. 81, 101–109 (2015)

    Article  Google Scholar 

  12. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation Advances in understanding and refinements to methodology. Mater. Res. Soc. 19(1), 3–20 (2004)

    Article  CAS  Google Scholar 

  13. B. Taljat, T. Zachari, F. Kosel, New analytical procedure to determine stress strain curve from spherical indentation data. Int. J. Solids Struct. 35(33), 4411–4426 (1998)

    Article  Google Scholar 

  14. O. Bartier, X. Hernot, G. Mauvoisin, Theoretical and experimental analysis of contact radius for spherical indentation. Mech. Mater. 42(6), 640–656 (2010)

    Article  Google Scholar 

  15. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, J.L. Hay, On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398, 331–335 (2001)

    Article  Google Scholar 

  16. F.M. Haggag, In-situ nondestructive measurements of key mechanical properties of oil and gas pipelines. ASME-PUBLICATIONS-PVP 429(November), 99–104 (2001)

    Google Scholar 

  17. F.Y.M. Haggag, G.E. Lucas, Determination of luders strains and flow properties in steels from hardness/microhardness tests. Metall. Trans. A 14(August), 1607–1613 (1983)

    Article  Google Scholar 

  18. R.V. Prakash, S.S. Chow, An evaluation of stress-strain property prediction by Automated Ball Indentation (ABI) testing”. J. Test. Eval. 35(3), 221–232 (2007)

    Google Scholar 

  19. V. Karthik et al., Finite element analysis of spherical indentation to study pile-up/sink-in phenomena in steels and experimental validation. Int. J. Mech. Sci. 54(1), 74–83 (2012)

    Article  Google Scholar 

  20. J.E. Campbell, R.P. Thompson, J. Dean, T.W. Clyne, Experimental and computational issues for automated extraction of plasticity parameters from spherical indentation. Mech. Mater. 124(March), 118–131 (2018)

    Article  Google Scholar 

  21. M. Bocciarelli, G. Bolzon, G. Maier, Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech. Mater. 37(8), 855–868 (2005)

    Article  Google Scholar 

  22. P. Haušild, A. Materna, J. Nohava, Characterization of anisotropy in hardness and indentation modulus by nanoindentation. Metallogr. Microstruct. Anal. 3(1), 5–10 (2014)

    Article  Google Scholar 

  23. A. Yonezu, K. Yoneda, H. Hirakata, M. Sakihara, K. Minoshima, A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spherical indentation—application to SiC whisker-reinforced aluminum alloy. Mater. Sci. Eng. A 527(29–30), 7646–7657 (2010)

    Article  Google Scholar 

  24. B. Riccardi, R. Montanari, Indentation of metals by a flat-ended cylindrical punch. Mater. Sci. Eng. A 381(1–2), 281–291 (2004)

    Article  Google Scholar 

  25. Y.C. Lu, S.N.V.R.K. Kurapati, F. Yang, Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes. J. Phys. D Appl. Phys. 41(11), 115415 (2008)

    Article  Google Scholar 

  26. Z. Hu, K. Lynne, F. Delfanian, Characterization of materials’ elasticity and yield strength through micro-/nano-indentation testing with a cylindrical flat-tip indenter. J. Mater. Res. 30(4), 578–591 (2015)

    Article  CAS  Google Scholar 

  27. A.R.H. Midawi, C.H.M. Simha, M.A. Gesing, A.P. Gerlich, Elastic-plastic property evaluation using a nearly flat instrumented indenter. Int. J. Solids Struct. 104, 81–91 (2016)

    Google Scholar 

  28. A.R.H. Midawi, C.H.M. Simha, A.P. Gerlich, Novel techniques for estimating yield strength from loads measured using nearly-flat instrumented indenters. Mater. Sci. Eng. A 675, 449–453 (2016)

    Article  CAS  Google Scholar 

  29. Det Norske Veritas, Submarine Pipeline Systems, no. F101. DNV, 2010

  30. R. Hill, The mathematical theory of plasticity, vol. 11 (Oxford University Press, Oxford, 1998)

    Google Scholar 

  31. P. Reynolds, F. Duvall, Digital image correlation for determination of weld and base metal constitutive behavior. Welding Journal-New York 78(10), 355–360 (1999)

    Google Scholar 

  32. A.P. Institute, API 1104. standard for welding pipelings and related facilities. Api 552, 79 (2005)

    Google Scholar 

  33. J. Lu, O. Omotoso, J.B. Wiskel, D.G. Ivey, H. Henein, Strengthening mechanisms and their relative contributions to the yield strength of microalloyed steels. Metall. Mater. Trans. A 43(9), 3043–3061 (2012)

    Article  CAS  Google Scholar 

  34. A.R.H. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor, A.P. Gerlich, Microstructures and mechanical properties in two X80 weld metals produced using similar heat input. J. Mater. Process. Tech. 226, 272–279 (2015)

    Article  CAS  Google Scholar 

  35. ASTM, “ASTM E112-13: Standard test methods for determining average grain size,” ASTM Int., pp. 1–28, 2013

  36. J. Lu, Quantitative Microstructural Characterization of Microalloyed Steels, University of Alberta, 2009.

Download references

Acknowledgment

The authors would like to acknowledge TransCanada Corp and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support. The authors also would like to acknowledge Mr. Jim Gianetto from CanmetMATERIALS and Natural Resources Canada for his help in performing the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. H. Midawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midawi, A.R.H., Huda, N., Simha, C.H.M. et al. Characterization of Anisotropy of Strength in API-X80 Line Pipe Welds Through Instrumented Indentation. Metallogr. Microstruct. Anal. 9, 884–894 (2020). https://doi.org/10.1007/s13632-020-00693-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00693-8

Keywords

Navigation