Skip to main content
Log in

Annealing of Shot Peened Austenitic Superheater Tubes and Its Consequences for Steamside Oxidation

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Surface modifications offer promising solutions to increase the lifetime and performance of superheaters in industrial applications. The surface and internal structure of the steamside of austenitic superheater tubes of TP347H austenitic stainless steel was modified by shot peening and the thermal stability of the microstructure at the surface was followed in-situ and ex-situ during subsequent isothermal annealing. At various industrially relevant temperatures, the kinetics of microstructure evolution near the surface was investigated by applying complementary methods of microscopy and diffraction analysis. The beneficial effect of shot peening on reducing steamside oxidation was confirmed both on laboratory scale mimicking the real industrial conditions and after long-term exposure to steam oxidation conditions in a thermal power plant. Both the effect of the grain size in austenite and the role of shot peening on steam oxidation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Osgerby, A.T. Fry, Steam Oxidation Resistance of Selected Austenitic Steels. Mater. Sci. Forum 461–464, 1023–1030 (2004)

    Article  Google Scholar 

  2. A.N. Hansson, K. Pantleon, F.B. Grumsen, M.A.J. Somers, Microstructure Evolution During Steam Oxidation of a Nb Stabilized Austenitic Stainless Steel. Oxid. Met. 73, 289–309 (2010)

    Article  CAS  Google Scholar 

  3. J.C. Rosser, M.I. Bass, C. Cooper, T. Lant, P.D. Brown, B.J. Connolly, H.E. Evans, Steam Oxidation od Super 304H and Shot-Peened Super 304H. Mater. High Temp. 29, 95–106 (2012)

    Article  CAS  Google Scholar 

  4. T. Dudziak, M. Łukaszewicz, N. Simms, J. Nicholls, Analysis of High Temperature Steam Oxidation of Superheater Steels Used in Coal Fired Boilers. Oxid. Met. 85, 171–187 (2016)

    Article  CAS  Google Scholar 

  5. I.G. Wright, R.B. Dooley, Morphology of Oxide Growth and Exfoliation in Superheater and Reheater Tubing of Steam Boilers. Mater. High Temp. 28, 40–57 (2011)

    Article  CAS  Google Scholar 

  6. R. Viswanathan, W. Bakker, Materials for Ultrasupercritical Coal Power Plants—Boiler Materials: Part 1. J. Mater. Eng. Perform. 10, 81–95 (2001)

    Article  CAS  Google Scholar 

  7. H., Matsuo, Y. Nishiyama, and Y. Yamadera, Steam oxidation property of fine-grain steels, in Proceedings from the Fourth International Conference on Advances in Materials Technology for Fossile Power Plants, EPRI Report Number 1011381, pp. 441–450 (2005)

  8. K. Yoshikawa, H. Teranishi, K. Tokimasa, H. Fujikawa, M. Miura, K. Kubota, Fabrication and Properties of Corrosion Resistant TP347H Stainless Steel. J. Mater. Eng. 10, 69–83 (1988)

    Article  CAS  Google Scholar 

  9. M. Montgomery, O. Hede Larsen, S. Aakjær Jensen, O. Biede, Field Investigation of Steamside Oxidation for TP347H. Mater. Sci. Forum 461–464, 1007–1014 (2004)

    Article  Google Scholar 

  10. Y. Nishiyama, A. Iseda, M. Yoshizawa, S. Matsumoto, and M. Igarashi, Effect of grain size on steam oxidation for shot-peened stainless steels, in Advances in Materials Technology for Fossil Power Plants: Proceedings from the sixth International Conference, pp. 185–197 (2011)

  11. S. Wang, Y. Li, M. Yao, R. Wang, Compressive Residual Stress Introduced by Shot Peening. J. Mater. Process. Technol. 73, 64–73 (1998)

    Article  Google Scholar 

  12. S. Bagherifard, S. Slawik, I. Fernández-Pariente, C. Pauly, F. Mücklich, M. Guaglianoa, Nanoscale Surface Modification of AISI 316L Stainless Steel by Severe Shot Peening. Mater. Des. 102, 68–77 (2016)

    Article  CAS  Google Scholar 

  13. G. Fargas, J.J. Roa, A. Mateo, Effect of Shot Peening on Metastable Austenitic Stainless Steels. Mater. Sci. Eng., A 641, 290–296 (2015)

    Article  CAS  Google Scholar 

  14. S. Pour-Ali, A.R. Kiani-Rashid, A. Babakhani, S. Virtanen, Thermal Stability of Nanocrystalline Surface Layer of AISI 321 Stainless Steel. Vacuum 146, 297–303 (2017)

    Article  CAS  Google Scholar 

  15. H. Yinsheng, Y. Keun-Bong, M. Houyu, S. Keesam, Study of the Austenitic Stainless Steel with Gradient Structured Surface Fabricated Via Shot Peening. Mater. Lett. 215, 187–190 (2018)

    Article  Google Scholar 

  16. N.R. Tao, M.L. Suib, J. Lud, K. Lua, Surface Nanocrystallization of Iron Induced by Ultrasonic Shot Peening. Nanostruct. Mater. 11, 433–440 (1999)

    Article  CAS  Google Scholar 

  17. J.L. Liu, M. Umemoto, Y. Todaka, K. Tsuchiya, Formation of a Nanocrystalline Surface Layer on Steels by Air Blast Shot Peening. J. Mater. Sci. 42, 7716–7720 (2007)

    Article  CAS  Google Scholar 

  18. W.B. Liu, C. Zhang, Z.X. Xia, Z.G. Yang, P.H. Wang, J.M. Chen, Strain Induced Refinement and Thermal Stability of a Nanocrystalline Steel Produced by Surface Mechanical Attrition Treatment. Mater. Sci. Eng., A 568, 176–183 (2013)

    Article  CAS  Google Scholar 

  19. W. Liu, C. Zhang, Z. Yang, Z. Xia, Microstructure and Thermal Stability of Bulk Nanocrystalline Alloys Produced by Surface Mechanical Attrition Treatment. Appl. Surf. Sci. 292, 556–562 (2014)

    Article  CAS  Google Scholar 

  20. Y. Todaka, M. Umemoto, Y. Watanabe, K. Tsuchiya, Formation of Nanocrystalline Structure by Shot Peening. Mater. Sci. Forum 503–504, 669–674 (2006)

    Article  Google Scholar 

  21. T. Wang, J. Yu, B. Dong, Surface Nanocrystallization Induced by Shot Peening and Its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel. Surf. Coat. Technol. 200, 4777–4781 (2006)

    Article  CAS  Google Scholar 

  22. R.U. Husemann, Materials and Their Service Properties for Superheater and Reheater Tubing in Power Stations with Advanced Steam Parameters: Part 2: Influence of Oxidation and Cold Deformation, Conclusions and Recommendations. VGB PowerTech 79, 84–87 (1999)

    CAS  Google Scholar 

  23. J.I. Langford, A Rapid Method for Analysing the Breadths of Diffraction and Spectral Lines Using the Voigt Function. J. Appl. Cryst. 11, 10–14 (1978)

    Article  CAS  Google Scholar 

  24. T.H. De Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening. J. Appl. Cryst. 15, 308–314 (1982)

    Article  Google Scholar 

  25. G.K. Williamson, W.H. Hall, X-ray Line Broadening from Filed Aluminum and Wolfram. Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  26. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon, New York, 1996)

    Google Scholar 

  27. W. Xuanpei, Q. Zeyou, Z. Zhiling, Z. Hongcheng, W. Weijie, W. Yanfei, Surface Grain Refinement of 304L Stainless Steel by Combined Severe Shot Peening and Reversion Annealing Treatment. Coatings 10, 470–477 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Richard Kemsies and Sunday Chukwudi Okoro, who carried out some of the experimental work. Furthermore, Alice Bastos Fanta and Hossein Alimadadi are kindly acknowledge for valuable discussions and support with EBSD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Pantleon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantleon, K., Lampert, F. & Montgomery, M. Annealing of Shot Peened Austenitic Superheater Tubes and Its Consequences for Steamside Oxidation. Metallogr. Microstruct. Anal. 9, 603–614 (2020). https://doi.org/10.1007/s13632-020-00666-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00666-x

Keywords

Navigation