Skip to main content
Log in

Investigation on Mechanical Properties and Immersion Corrosion Performance of 0.35%C–10.5%Mn Steel Processed by Austenite Reverted Transformation (ART) Annealing Process

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The objective of this work is to evaluate the mechanical properties and immersion corrosion performance of 0.35%C–10.5%Mn steel processed by austenite reverted transformation (ART) annealing process. Microstructure analysis revealed the formation of the well-refined microstructure having martensite (α′) and retained austenite (γ) phases after 4 h of ART-annealing compared to non-heat-treated steel. This phase transformation caused a 50% improvement in total elongation and 42.85% in impact toughness. ART-annealing for 16 h offered an optimum combination of mechanical properties. Immersion corrosion test of 168 h was also performed to evaluate the corrosion performance in a 5% NaCl solution. ART-annealed samples exhibited crack-free, thick and uniform oxide layer with Cl precipitates. ART-annealing for 4 and 16 h produced a porous-structured corrosion product, while 8 and 12 h of ART-annealing produced rod-shaped corrosion product. The performance of the porous-structured corrosion product in inhibiting corrosion mechanism was much better than the rod-shaped corrosion product. The ART-annealing process performed for 16 h exhibited maximum corrosion resistance as evidenced by the lowest value of weight loss (0.64 mg/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Han, Y.K. Lee, The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater 67, 354–361 (2014)

    Article  CAS  Google Scholar 

  2. M. Pourmajidian, J.R. McDermid, On the reactive wetting of a medium-Mn advanced high-strength steel during continuous galvanizing. Surf. Coat. Technol. 357, 418–426 (2019)

    Article  CAS  Google Scholar 

  3. Z. Dai, R. Ding, Z. Yang, C. Zhang, H. Chen, Thermo-kinetic design of retained austenite in advanced high strength steels. Acta Mater 152, 288–299 (2018)

    Article  CAS  Google Scholar 

  4. Q.S. Allen, T.W. Nelson, Microstructural evaluation of hydrogen embrittlement and successive recovery in advanced high strength steel. J. Mater Process. Technol. 265, 12–19 (2018)

    Article  Google Scholar 

  5. M.A. Paykani, H.R. Shahverdi, R. Miresmaeili, First and third generations of advanced high-strength steels in a FeCrNiBSi system. J. Mater Process. Technol. 238, 383–439 (2016)

    Article  Google Scholar 

  6. W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong, Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing. Mater. Sci. Eng. A 528, 6661–6666 (2011)

    Article  CAS  Google Scholar 

  7. M. Bhargava, A. Tewari, S.K. Mishra, Forming limit diagram of advanced high strength steels (AHSS) based on strain-path diagram. Mater. Des. 85, 149–155 (2015)

    Article  CAS  Google Scholar 

  8. I. Mejía, G. Altamirano, A.B. Jacuinde, J.M. Cabrera, Modeling of the hot flow behavior of advanced ultra-high strength steels (AUHSS) microalloyed with boron. Mater. Sci. Eng. A 610, 116–125 (2014)

    Article  Google Scholar 

  9. T. Park, L.G. Hector, J.X. Hu, F.A. Farha, M.R. Fellinger, H. Kim, R. Esmaeilpour, F. Pourboghrat, Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation. Int. J. Plasticity 120, 1–46 (2019)

    Article  Google Scholar 

  10. A. Srivastava, H.G. Armaki, H. Sung, P. Chen, S. Kumar, A.F. Bower, Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling. J. Mech. Phys. Solids 78, 46–69 (2015)

    Article  CAS  Google Scholar 

  11. Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, Microstructure mechanical property relationship and austenite stability in medium-Mn TRIP steels: the effect of austenite-reverted transformation and quenching-tempering treatments. Mater. Sci. Eng. A 682, 211–219 (2017)

    Article  CAS  Google Scholar 

  12. H. Liu, L.X. Du, J. Hu, H.Y. Wu, X.H. Gao, R.D.K. Misra, Interplay between reversed austenite and plastic deformation in a directly quenched and intercritically annealed 0.04C–5Mn low-Al steel. J. Alloy Compd. 695, 2072–2082 (2017)

    Article  CAS  Google Scholar 

  13. D.P. Yang, D. Wu, H.L. Yi, Reverse transformation from martensite into austenite in a medium-Mn steel. Scr. Mater. 161, 1–5 (2019)

    Article  CAS  Google Scholar 

  14. Z. Wang, K. Wang, Y. Liu, B. Zhu, Y. Zhang, S. Li, Multi-scale simulation for hot stamping quenching and partitioning process of high-strength steel. J. Mater. Process. Tech. 269, 150–162 (2019)

    Article  CAS  Google Scholar 

  15. J. Shi, J. Hu, C. Wang, C.Y. Wang, H. Dong, W. Cao, Ultrafine grained duplex structure developed by ART-annealing in cold rolled medium Mn steels. J. Iron Steel Res. Int. 21, 208–214 (2014)

    Article  CAS  Google Scholar 

  16. C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, W.Q. Cao, Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART annealing. ISIJ Int. 51, 651–656 (2011)

    Article  CAS  Google Scholar 

  17. P. Mahana, N. Prasad, Microstructure evolution of high Mn steel through ART annealing. IJMET 9, 1115–1128 (2018)

    Google Scholar 

  18. L. Zhang, X. Huang, Y. Guo, Y. Wang, J. Gao, G. Dai, Effect of ART-annealing conditions on microstructural regulation and deformation behavior of 0.17C–9Mn–3.5Al TRIP-aided steel. Steel Res. Int. 87, 1–11 (2017)

    Google Scholar 

  19. C. Liu, Z. Zhao, D.O. Northwood, Y. Liu, A new empirical formula for the calculation of MS in pure iron super low alloy steels. J. Mater. Process. Technol. 113, 556–562 (2001)

    Article  CAS  Google Scholar 

  20. M.A. Hafeez, A. Farooq, Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures. Mater. Res. Express 5, 016505 (2018)

    Article  Google Scholar 

  21. M.A. Hafeez, A. Farooq, Effect of quenching baths on microstructure and hardness of AISI1035 steel. NJTR 13, 82–88 (2018)

    Google Scholar 

  22. M.A. Hafeez, Effect of microstructural transformation during tempering on mechanical properties of quenched and tempered 38CrSi steel. Mater. Res. Express 6, 086552 (2019)

    Article  CAS  Google Scholar 

  23. M.A. Hafeez, A. Farooq, Effect of heat treatments on the mechanical and electrochemical behavior of 38CrSi and AISI 4140 steels. Metallogr. Microstruct. Anal. 8, 479–487 (2019)

    Article  CAS  Google Scholar 

  24. M.A. Hafeez, A. Inam, M.A. Arshad, Investigation on microstructural, mechanical, and electrochemical properties of water, brine quenched and tempered low carbon steel. Mater. Res. Express 6, 096524 (2019). https://doi.org/10.1088/2053-1591/ab2c7f

    Article  CAS  Google Scholar 

  25. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw–Hill, New York, 2017)

    Google Scholar 

  26. W.D. Callister, J. David, G. Rethwisch, Material Science and Engineering an Introduction, 8th edn. (Wiley, New Jersey, 2009)

    Google Scholar 

  27. X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, C.F. Dong, Materials Science: Share corrosion data. Nature 527, 441–442 (2015)

    Article  CAS  Google Scholar 

  28. W. Zhao, Y. Zou, K. Matsuda, Z.D. Zou, Corrosion behaviour of reheated CGHAZ of X80 pipeline steel in H2S-containing environments. Mater. Des. 99, 44–56 (2016)

    Article  CAS  Google Scholar 

  29. S. Zhang, H. Zhao, F. Shu, W. He, G. Wang, Microstructure and corrosion behavior of simulated welding HAZ of Q315NS steel in sulfuric acid solution. Metal (2017). https://doi.org/10.3390/met7060194

    Article  Google Scholar 

  30. M.A. Hafeez, A. Inam, A. Farooq, Mechanical and corrosion properties of medium carbon low alloy steel after cyclic quenching and tempering heat–treatments. Mater. Res. Express 7, 016553 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arslan Hafeez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, M.A. Investigation on Mechanical Properties and Immersion Corrosion Performance of 0.35%C–10.5%Mn Steel Processed by Austenite Reverted Transformation (ART) Annealing Process. Metallogr. Microstruct. Anal. 9, 159–168 (2020). https://doi.org/10.1007/s13632-020-00629-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00629-2

Keywords

Navigation