Skip to main content
Log in

Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083 Joint

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this study, a modified version of friction stir spot welding (FSSW) is applied to join Al5083 specimens. In respect to conventional FSSW, this new method leads to better characteristics, finer grain sizes in the stir zone and higher mechanical properties. In this method, the workpiece is vibrated normal to tool axis direction during FSSW. This process is entitled friction stir spot vibration welding (FSSVW). The finite element method (FEM) was used to validate the experimental results. The FEM and experimental results had a good agreement. The microstructure of the welded zone was analyzed by scanning electron microscopy and optical microscopy. The results showed that the presence of vibration during FSSW led to more grain refinement. This was related to more straining of material in the welded zone which enhanced the dynamic recovery and recrystallization and increased the grain refinement. The results showed that grain size of welded region for friction stir spot-welded specimen was about 35% lower than that for friction stir spot-welded specimen. Mechanical properties such as tensile shear load and hardness increased as the vibration was applied. Also, mechanical properties increased as vibration frequency increased from 28 to 38 Hz during FSSVW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

FSSW:

Friction stir spot welding

FSSVW:

Friction stir spot vibration welding

S-FSSVW:

Simulation of friction stir spot welding

HAZ:

Heat-affected zone

TMAZ:

Thermo-mechanical-affected zone

WNZ:

Weld nugget zone

UAFSW:

Ultrasonic-assisted friction stir welding

SEM:

Scanning electron microscopy

CEL:

Coupled Eulerian–Lagrangian

JCP:

Johnson–Cook plasticity

EDS:

Energy-dispersive spectrometry

Z :

Zener–Hollomon parameter

R :

Gas constant

\( \sigma \) :

Static yield stress

\( \varepsilon \) :

Equivalent plastic strain

References

  1. J.M. Piccini, H.G. Svoboda, Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar aluminum-steel joint. Procedia Mater. Sci. 9, 504–513 (2015)

    Article  CAS  Google Scholar 

  2. A. Gerlich, P. Su, M. Yamamoto, T.H. North, Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy. Mater. Sci. 42, 5589–5601 (2007)

    Article  CAS  Google Scholar 

  3. J.M. Piccini, H.J. Svoboda, Effect of the tool penetration depth in friction stir spot welding (FSSW) of dissimilar aluminum alloys. Procedia Mater. Sci. 8, 868–877 (2015)

    Article  CAS  Google Scholar 

  4. Y. Tozaki, Y. Uematsu, K. Tokaji, Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Mach. Tools Manuf. 47, 2230–2236 (2007)

    Article  Google Scholar 

  5. O. Tuncel, H. Aydin, M. Tutar, A. Bayram, Mechanical performance of friction stir spot welding AA6082-T6 sheets. Mech. Prod. Eng. 4(1), 114–118 (2016)

    Google Scholar 

  6. B. Srinivasulu, Namish Mehta, Friction stir spot welding on similar aluminum alloys Al6082 by using different shape of EN19 and EN31 profile tool. Curr. Eng. Sci. Res. (IJCESR) 4(10), 8–11 (2017)

    Google Scholar 

  7. N. Srirangarajalu, Experimental study on friction stir spot welded aluminium alloy AA 1100. Mech. Eng. Robot. (IJMER) 3(5), 42–45 (2015)

    Google Scholar 

  8. M.K. Kulekci, Effects of process parameters on tensile shear strength of friction stir spot welded aluminium alloy (EN Aw 5005). Arch. Metall. Mater. 59(1), 221–224 (2014)

    Article  CAS  Google Scholar 

  9. S.H. Toshiya, M. Kenzo, Y. Shyuhei, Friction stir spot welding of pure aluminum sheet in view of high temperature deformation. Join. Weld. Res. Inst. 40(2), 1–5 (2011)

    Google Scholar 

  10. H. Sheikhhasani, H. Sabet, M. Abbasi, Investigation of the effect of friction stir spot welding of BH galvanized steel plates on process parameters and weld mechanical properties. Eng. Technol. Appl. Sci. Res. 6(5), 1149–1154 (2016)

    Google Scholar 

  11. S.W. Baek, D.H. Choi, ChY Lee, A.S.B. Yeon Jung, Microstructure and mechanical properties of friction stir spot welded galvanized steel. Mater. Trans. 51(5), 1044–1050 (2010)

    Article  CAS  Google Scholar 

  12. N. Jafarzadeh Aghdam, S. Hassanifard, M.M. Ettefagh, A. Nanvayesavojblaghi, Investigating fatigue life effects on the vibration properties in friction stir spot welding using experimental and finite element modal analysis. Mech. Eng. 60(11), 735–774 (2014)

    Google Scholar 

  13. A. Dey, S.C. Saha, K.M. Pandey, Study of mechanical properties change during friction stir spot welding of aluminium alloys. Curr. Trends Technol. Sci. Curr. Trends Technol. Sci. 3(1), 26–33 (2014)

    Google Scholar 

  14. C. Schilling, J. Dos Santos, Method and device for linking at least two adjoining pieces by friction welding, US Patent 6722556B2, 2004

  15. Y.F. Sun, H. Fujii, N. Takaki, Y. Okitsu, Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. Mater. Des. 47, 350–357 (2013)

    Article  CAS  Google Scholar 

  16. K. Chen, X. Liu, J. Ni, Electrical assisted friction stir spot welding of aluminum alloy to advanced strength steel, in ASME 2017 12th International Manufacturing Science and Engineering Conference, Los Angeles, California, USA, June 4–8, 2017

  17. Y. Rostamiyan, A. Seidanloo, H. Sohrabpoor, R. Teimouri, Experimental studies on ultrasonically assisted friction stir spot welding of AA6061. Arch. Civ. Mech. Eng. 15, 335–346 (2015)

    Article  Google Scholar 

  18. S.D. Ji, Z.W. Li, Y.M. Yue, S.S. Gao, Investigation of ultrasonic assited friction stir spot welding of magnesium alloy to aluminum alloy. Strength Mater. 48, 2–7 (2016)

    Article  CAS  Google Scholar 

  19. X.C. Liu, C.S. Wu, G.K. Padhy, Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scr. Mater. 102, 95–98 (2015)

    Article  Google Scholar 

  20. K. Park, Development and analysis of ultrasonic assisted friction stir welding process. Ph.D Thesis, The University of Michigan, 2009

  21. X.C. Liu, C.S. Wu, G.K. Padhy, Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Sci. Technol. Weld. Join. 20(4), 345–352 (2015)

    Article  CAS  Google Scholar 

  22. B. Strass, G. Wagner, D. Eifler, Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding. Mater. Sci. Forum 783–786, 1814–1819 (2014)

    Article  Google Scholar 

  23. S. Amini, M.R. Amiri, Study of ultrasonic vibrations’ effect on friction stir welding. Int. J. Adv. Manuf. Technol. 73(1–4), 127–135 (2014)

    Article  Google Scholar 

  24. M. Ahmadnia, A. Seidanloo, R. Teimouri, Y. Rostamiyan, K.G. Titrashi, Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints. Int. J. Adv. Manuf. Technol. (2015). https://doi.org/10.1007/s00170-015-6784-0

    Article  Google Scholar 

  25. Z.H. Liu, S.H. Ji, X. Meng, Joining of magnesium and aluminum alloys via ultrasonic assisted friction stir welding at low temperature. Int. J. Adv. Manuf. Technol. 97, 4127–4136 (2018)

    Article  Google Scholar 

  26. ASTM E3-11, Standard guide for preparation of metallographic specimens (ASTM International, West Conshohocken, 2011)

    Google Scholar 

  27. ASTM-E112-13, Standard Test Methods for Determining Average Grain Size (ASTM International, West Conshohocken, 2013)

    Google Scholar 

  28. ABAQUS/6.14.2, Providence, RI, USA: Dassault Systems Simulia Corp, 2016

  29. H. Yalavarthy, Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloys. All Thesis, Clemson university, 2009

  30. M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol. Weld. Join. 8(3), 165–174 (2003)

    Article  Google Scholar 

  31. J.W. Pew, T.W. Nelson, C.D. Sorenson, Torque based weld power model for friction stir welding. Sci. Technol. Weld. Join. 12, 341–347 (2007)

    Article  Google Scholar 

  32. M. Mijajlovic, D. Milcic, Analytical model for estimating the amount of heat generated during friction stir welding: application of plates made of aluminum alloy 2024 T351, Welding processes, Chap. 11 (InTech, 2012), pp. 247–274

  33. P. Ferro, F. Bonollo, A semianalytical thermal model for friction stir welding. Metall. Mater. Trans. A 41, 440–449 (2009)

    Article  Google Scholar 

  34. H. Atharifar, D. Lin, R. Kovacevic, Numerical and experimental investigations on the loads carried by the tool during friction stir welding. J. Mater. Eng. Perform. 18, 339–350 (2008)

    Article  Google Scholar 

  35. H. Schmidt, J. Hattel, J. Wert, An analytical model for heat generation in friction stir welding. Modell. Simul. Mater. Sci. Eng. 12, 143–157 (2004)

    Article  Google Scholar 

  36. D.H. Lammlein, D.R. DeLapp, P.A. Fleming, A.M. Strauss, G.E. Cook, The application of shoulderless conical tools in friction stir welding: an experimental and theoretical study. Mater. Des. 30, 4012–4022 (2009)

    Article  CAS  Google Scholar 

  37. R. Nandan, T. DeBroy, Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall. Mater. Trans. A 37, 1247–1259 (2006)

    Article  Google Scholar 

  38. Y. Huang, Y. Wang, X. Meng, L. Wan, J. Cao, L. Zhou, J. Feng, Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys. J. Mater. Process. Technol. 249, 331–338 (2017). https://doi.org/10.1016/j.jmatprotec.2017.06.021. (Accepted Manuscript)

    Article  CAS  Google Scholar 

  39. A.G. Rao, K.R. Ravi, B. Ramakrishnarao, V.P. Deshmukh, A. Sharma, N. Prabhu, B.P. Kashyap, Recrystallization phenomena during friction stir processing of hypereutectic aluminum-silicon alloy. Metall. Mater. Trans. A 44, 1519–1529 (2013)

    Article  CAS  Google Scholar 

  40. M. Rahmi, M. Abbasi, Friction stir vibration welding process: modified version of friction stir welding process. Int. J. Adv. Manuf. Technol. 90, 141–151 (2017)

    Article  Google Scholar 

  41. S. Fouladi, A.H. Ghasemi, M. Abbasi, M. Abedini, A.M. Khorasani, I. Gibson, The effect of vibration during friction stir welding on corrosion behavior. Mech. Prop. Mach. Charact. Stir Zone Met. 7, 421–435 (2017)

    Google Scholar 

  42. W.D. Callister, Materials Science and Engineering: An Introduction (Wiley, USA, 2007)

    Google Scholar 

  43. K.V. Jata, S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr. Mater. 43, 743–749 (2000)

    Article  CAS  Google Scholar 

  44. J.Q. Su, T.W. Nelson, C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater. Sci. Eng. A 405, 277–286 (2005)

    Article  Google Scholar 

  45. S. Fouladi, M. Abbasi, The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint. J. Mater. Process. Technol. 243, 23–30 (2017)

    Article  CAS  Google Scholar 

  46. B. Bagheri, M. Abbasi, M. Givi, Effects of vibration on microstructure and thermal properties of friction stir spot welded (FSSW) aluminum alloy (Al5083). Int. J. Precis. Eng. Manuf. (2019). https://doi.org/10.1007/s12541-019-00134-9

    Article  Google Scholar 

  47. M. Abbasi, M. Givi, B. Bagheri, Application of vibration to enhance the efficiency of friction stir processing. J. Trans. Nonferrous Met. Soc. China 29, 1393–1400 (2019)

    Article  CAS  Google Scholar 

  48. D. Hull, D.J. Bacon, Introduction to Dislocations (Butterworth-Heinemann, Britain, 2011), pp. 87–95

    Google Scholar 

  49. B. Bagheri, M. Abbasi, Analysis of microstructure and mechanical properties of friction stir vibration welded (FSVW) 5083 aluminum alloy joints: experimental and simulation. J. Weld. Join. (2019). https://doi.org/10.5781/jwj.2019.37.3.82019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Mahdian Rizi, A.A., Abbasi, M. et al. Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083 Joint. Metallogr. Microstruct. Anal. 8, 713–725 (2019). https://doi.org/10.1007/s13632-019-00563-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00563-y

Keywords

Navigation