Skip to main content
Log in

Dry Sliding Wear Behavior of Al0.4FeCrNiCox(x = 0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This study aims to investigate the dry sliding wear behavior of Al0.4FeCrNiCox(x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys (HEAs) at room temperature by varying sliding speed and normal load. X-ray diffraction studies indicate that the BCC phase decreases and completely disappears as cobalt content increases from x = 0–1.0 mol. Correspondingly, the hardness of the proposed alloys decreases from 377.7 to 199.5 HV with the addition of cobalt content from x = 0–1.0 mol. The wear analysis indicates that the highest specific wear rate occurs in the case of Al0.4FeCrNiCox=1 HEA with varying sliding velocity and normal load, respectively. The worn surface was analyzed by using scanning electron microscopy with attached energy-dispersive X-ray spectroscopy, 3D profiling, and X-ray photoelectron spectroscopy (XPS) in order to understand the wear mechanism and oxides formed during the wear process. Results indicated that the wear occurred due to adhesion along with delamination, plastic flow, and oxidative wear. XPS results indicate that the presence of Al2O3, Fe2O3, Cr2O3, and Co3O4 oxides formed on the worn surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)

    Article  Google Scholar 

  2. J.W. Yeh, Physical metallurgy of high-entropy alloys. JOM 67, 2254–2261 (2015)

    Article  Google Scholar 

  3. B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st edn. (Elsevier, London, 2014)

    Google Scholar 

  4. D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, V. Kumar, Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 71–77 (2017)

    Article  Google Scholar 

  5. A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 683, 221–230 (2016)

    Article  Google Scholar 

  6. T.T. Shun, Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J. Alloys Compd. 479, 157–160 (2009)

    Article  Google Scholar 

  7. R. Wang, K. Zhang, C. Davies, X. Wu, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971–981 (2017)

    Article  Google Scholar 

  8. T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. J. Alloys Compd. 674, 229–244 (2016)

    Article  Google Scholar 

  9. Y. Wang, Y. Yang, H. Yang, M. Zhang, J. Qiao, Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd. 725, 365–372 (2017)

    Article  Google Scholar 

  10. T.M. Butler, M.L. Weaver, Investigation of the phase stabilities in AlNiCoCrFe high entropy alloys. J. Alloys Compd. 691, 119–129 (2016)

    Article  Google Scholar 

  11. W. Chen, Z. Fu, S. Fang, H. Xiao, D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854–860 (2013)

    Article  Google Scholar 

  12. S. Fang, W. Chen, Z. Fu, Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973–979 (2014)

    Article  Google Scholar 

  13. G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, J. Guo, Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100–x Cox high-entropy alloys. Mater. Sci. Eng., A 710, 200–205 (2018)

    Article  Google Scholar 

  14. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263–1271 (2005)

    Article  Google Scholar 

  15. C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465–1469 (2004)

    Article  Google Scholar 

  16. M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, M.H. Chuang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 37, 1363–1369 (2006)

    Article  Google Scholar 

  17. M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, C.P. Tu, Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0–2.0) high-entropy alloys. Mater. Trans. 47, 1395–1401 (2006)

    Article  Google Scholar 

  18. X. Liu, W. Lei, L. Ma, J. Liu, J. Liu, J. Cui, On the microstructures, phase assemblages and properties of Al0.5CoCrCuFeNiSix high-entropy alloys. J. Alloys Compd. 630, 151–157 (2015)

    Article  Google Scholar 

  19. Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 210, 233–239 (2018)

    Article  Google Scholar 

  20. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao, Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol. 35, 917–925 (2019)

    Article  Google Scholar 

  21. L. Ma, L. Wang, Z. Nie, F. Wang, Y. Xue, J. Zhou, T. Cao, Y. Wang, Y. Ren, Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron- based high-energy X-ray diffraction. Acta Mater. 128, 12–21 (2017)

    Article  Google Scholar 

  22. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x≤2) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009)

    Article  Google Scholar 

  23. S. Kumar, A. Patnaik, A.K. Pradhan, V. Kumar, Room temperature wear study of Al0.4FeCrNiCox(x = 0, 0.25, 0.5, 1.0 mol) high-entropy alloys under oil lubricating conditions. J. Mater. Res. 34, 841–853 (2019)

    Article  Google Scholar 

  24. F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, C.T. Liu, Solid solution island of the Co–Cr–Fe–Ni high entropy alloy system. Scr. Mater. 131, 42–46 (2017)

    Article  Google Scholar 

  25. M.M. Khruschov, Principles of abrasive wear. Wear 28, 69–88 (1974)

    Article  Google Scholar 

  26. I. Hutching, Tribology; Friction And Wear of Engineering Materials (Elsevier, London, 2017)

    Google Scholar 

  27. G. Rasool, M.M. Stack, Mapping the role of Cr content in dry sliding of steels: comparison between maps for material and counterface. Tribiol. Int. 80, 49–57 (2014)

    Article  Google Scholar 

  28. A. Gaard, N. Hallback, P. Krakhmalev, J. Bergstrom, Temperature effects on adhesive wear in dry sliding contacts. Wear 268, 968–975 (2010)

    Article  Google Scholar 

  29. P.C. Okonkwo, G. Kelly, B.F. Rolfe, M.P. Pereira, The effect of sliding speed on the wear of steel—tool steel pairs. Tribiol. Int. 97, 218–227 (2016)

    Article  Google Scholar 

  30. M.K. Mondal, K. Biswas, J. Maity, Dry sliding wear behaviour of a novel 6351 Al–Al4 SiC4 composite at high loads. Can. Metall. Q. 55, 75–93 (2016)

    Article  Google Scholar 

  31. P. Heilmann, J. Don, T.C. Sun, D.A. Rigney, Sliding wear and transfer. Wear 91, 171–190 (1983)

    Article  Google Scholar 

  32. A.F. Smith, The influenc of surface oxidation and sliding speed on the unlubricated wear of 316 stainless steel at low load. Wear 105, 91–107 (1985)

    Article  Google Scholar 

  33. X. Ji, S.H. Alavi, S.P. Harimkar, Y. Zhang, Sliding wear of spark plasma sintered CrFeCoNiCu high-entropy alloy coatings: effect of aluminum addition. J. Mater. Eng. Perform. 27, 5815–5822 (2018)

    Article  Google Scholar 

  34. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513–519 (2006)

    Article  Google Scholar 

  35. L.D. Conceicao, A.S.C.M. D’Oliveira, The effect of oxidation on the tribolayer and sliding wear of a Co-based coating. Surf. Coat. Technol. 288, 69–78 (2016)

    Article  Google Scholar 

  36. E.S. Zanoria, S. Danyluk, M.J. Mcnallan, Formation of cylindrical sliding-wear debris on silicon in humid conditions and elevated temperatures. Tribol. Trans. 38, 721–727 (1995)

    Article  Google Scholar 

  37. A. Zmitrowicz, Wear debris: a review of properties and constitutive models. J. Theor. Appl. Mech. 43, 3–35 (2005)

    Google Scholar 

  38. D. Mandal, B.K. Dutta, S.C. Panigrahi, Wear and friction behavior of stir cast aluminium-base short steel fiber reinforced composites. Wear 257, 654–664 (2004)

    Article  Google Scholar 

  39. V. Singh, K. Marchev, C.V. Cooper, E.I. Meletis, Intensified plasma-assisted nitriding of AISI 316L stainless steel. Surf. Coat. Technol. 160, 249–258 (2002)

    Article  Google Scholar 

  40. M.R. Andres, A. Conde, J.D. Damborenea, I. Garcia, Friction and wear behaviour of dual phase steels in discontinuous sliding contact conditions as a function of sliding speed and contact frequency. Tribol. Int. 90, 32–42 (2015)

    Article  Google Scholar 

  41. H. So, C.T. Chen, Y.A. Chen, Wear behaviours of laser-clad stellite alloy 6. Wear 192, 78–84 (1996)

    Article  Google Scholar 

  42. I. Velkavrh, F. Ausserer, S. Klien, J. Brenner, P. Foret, A. Diem, The effect of gaseous atmospheres on friction and wear of steel–steel contacts. Tribol. Int. 79, 99–110 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Advanced Research Laboratory for Tribology, Department of Mechanical Engineering MNIT Jaipur, Material Research Centre, MNIT Jaipur for carrying out the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Patnaik, A., Pradhan, A.K. et al. Dry Sliding Wear Behavior of Al0.4FeCrNiCox(x = 0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys. Metallogr. Microstruct. Anal. 8, 545–557 (2019). https://doi.org/10.1007/s13632-019-00551-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00551-2

Keywords

Navigation