Skip to main content
Log in

Novel Use of Distribution Facilitators and Time–Temperature Range for Strengthening in Surface Composites on AA7050-T7451

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

High-strength AA7050-T7451 finds widespread applications in aircraft and aerospace applications. Enhancement of its peak strength is highly useful and extremely challenging. Strengthening due to reinforcement largely depends on homogeneity of distribution. Common distribution approach is to perform multi-pass FSP. Heat input associated with every pass is detrimental to strength. Newer approach for effective distribution and identification of temperature range that is innocuous to T7451 strength is the ideal solution to address this issue. This paper has proposed a maiden and novel approach to add low softening temperature HCP metal powder to the ceramic reinforcement which aids in particle distribution in single FSP pass. The experimental investigation was performed using Taguchi’s L27 orthogonal array. The single-pass FSP demonstrated that in many experiments, the strength of fabricated surface composites surpassed the strength of 7050-T7451. Conditional analysis through a coded MACRO identified the range of temperature and processing time which provides net strengthening in the fabricated surface composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. E. Hornbogen, Hundred years of precipitation hardening. J. Light Met. 1(2), 127–132 (2001)

    Article  Google Scholar 

  2. R.S. Mishra, Z.Y. Ma, I. Charit, Friction stir processing: a novel technique for fabrication of surface composite. Mater. Sci. Eng. A 341, 307–310 (2003)

    Article  Google Scholar 

  3. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Mater. 42, 163–168 (2000)

    Article  CAS  Google Scholar 

  4. X. Zhang, W. Liu, S.D. Liu, Y.L. Deng, 7050 aluminum alloy TTP curve. Chin. J. Nonferr. Met. 19(5), 861–868 (2009)

    Article  CAS  Google Scholar 

  5. M. Komarasamy, K. Alagarsamy, R.S. Mishra, L. Ely, Characterization of 3″ through thickness friction stir welded 7050-T7451 Al alloy. Mater. Sci. Eng. A 716, 55–62 (2018)

    Article  CAS  Google Scholar 

  6. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014)

    Article  CAS  Google Scholar 

  7. J. Buha, R.N. Lumley, A.G. Crosky, Secondary ageing in an aluminium alloy 7050. Mater. Sci. Eng. A 492(1), 1–10 (2008)

    Article  Google Scholar 

  8. S.C. Jacumasso, J.D.P. Martins, A.L.M.D. Carvalho, Analysis of precipitate density of an aluminium alloy by TEM and AFM. Int. Eng. J. 69(4), 451–457 (2016)

    Google Scholar 

  9. J. Yuan, S. Wang, Y. Gong, J. Chen, Effect of thermal exposure on microstructures and mechanical properties of 7050-T7451 aluminum alloy plate, in Eleventh China Association for Science and Technology Annual Proceedings (2009)

  10. A. Douchant, M. Yanishevsky, A.L.M. Abdel-latif, Fatigue property database of heatexposed Al 7050-T7451 plate for the assessment of crack formation. Influence of Environment on Fatigue. Vancouver, BC, Canada: in CF-188 (F/A-18Hornet) Heat damaged formers, ICM8, Vol 1.7, Influence of Environment on Fatigue (May, 1999), pp. 358–363

  11. B. Zahmetkesh, M.H. Enayati, A novel approach for development of surface nanocomposite by friction stir processing. Mater. Sci. Eng. A 527(24–25), 6734–6740 (2010)

    Article  Google Scholar 

  12. D.K. Lim, T. Shibayanagi, A.P. Gerlich, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater. Sci. Eng. A 507, 194–199 (2009)

    Article  Google Scholar 

  13. R. Hashemi, G. Hussain, Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: a comparison of tool geometries and number of passes. Wear 324–325, 45–54 (2015)

    Article  Google Scholar 

  14. M. Barmouz, M.K. Besharati Givi, J. Seyfi, On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behaviour. Mater. Charact. 62(1), 108–117 (2011)

    Article  CAS  Google Scholar 

  15. H.J. Liu, H. Fujii, M. Maeda, K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J. Mater. Process. Technol. 142, 692–696 (2003)

    Article  CAS  Google Scholar 

  16. M. Bahrami, K.M. Givi Besharati, K. Dehghani, N. Parvin, On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater. Des. 53, 519–527 (2014)

    Article  CAS  Google Scholar 

  17. M. Barmouza, K.M. Givi Besharati, J. Seyfib, On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater. Charact. 62, 108–117 (2011)

    Article  Google Scholar 

  18. T. Ito, Y. Motohashi, G. Itoh, S. Hirano, Tensile properties of friction stir welded 7075 aluminum alloy at room temperature. J. Light Met. Weld. 49(12), 467–473 (2011)

    CAS  Google Scholar 

  19. M. Zohoor, M.K. Besharati Givi, P. Salami, Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater. Des. 39, 358–365 (2012)

    Article  CAS  Google Scholar 

  20. N. Gangil, S. Maheshwari, A.N. Siddiquee, Influence of tool pin and shoulder geometries on microstructure of friction stir processed AA6063/SiC composites. Mech. Ind. (2018). https://doi.org/10.1051/meca/2018010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Noor Siddiquee.

Appendix 1

Appendix 1

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangil, N., Maheshwari, S. & Siddiquee, A.N. Novel Use of Distribution Facilitators and Time–Temperature Range for Strengthening in Surface Composites on AA7050-T7451. Metallogr. Microstruct. Anal. 7, 561–577 (2018). https://doi.org/10.1007/s13632-018-0474-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0474-x

Keywords

Navigation