Skip to main content
Log in

On the Evolution of Microstructure of Gamma Prime + Gamma Platinum Bond Coats Deposited on Ni-Based Superalloys and Their Oxidation Resistance: Role of Superalloy Substrate

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The sequence of events leading to the development of γ′ + γ Pt bond coats by diffusing a 10-μm electroplated Pt layer into Ni-based superalloys is elucidated. Most evidence points out that a Pt3Al layer is initially formed at the Pt–superalloy interface during the diffusion heat treatment at 1150 °C. With continued interdiffusion through the Pt3Al layer, the Pt–Pt3Al interface is displaced outward, and the Pt3Al–superalloy interface is displaced inward. This leads to formation of a surface layer of Ni-rich Pt3Al-based γ′-phase, which is eventually transformed into Pt-rich Ni3Al-based γ′-phase leaving behind inner layers depleted in γ′-forming elements and consisting of various mixtures of γ′- and γ-phases. It is shown that the composition of the superalloy particularly the Ti content influences both the thickness and oxidation resistance of the bond coat. Although a higher Ti content promotes a thicker coating, it can have an adverse effect on oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. CMSX is a trademark of the Cannon Muskegon Corporation.

References

  1. H. Lammermanm, G. Kienel, PVD coatings for aircraft turbine blades. Adv. Mater. Process. 140, 18–23 (1991)

    Google Scholar 

  2. D.S. Rickerby, S.R. Bell, R.G. Wang, Method of applying a thermal barrier coating to a superalloy article, US Patent No. 5,667, 663 (1997)

  3. H.M. Tawancy, A.I. Mohamed, N.M. Abbas, R.E. Jones, D.S. Rickerby, Effect of superalloy substrate composition on the performance of a thermal barrier coating system. J. Mater. Sci. 38, 3797–3807 (2000)

    Article  Google Scholar 

  4. J.A. Haynes, K.A. Unocic, M.J. Lance, Influences of superalloy composition and Pt content on the oxidation behavior of gamma-gamma prime NiPtAl bond coatings. Oxid. Met. 86, 453–481 (2016)

    Article  Google Scholar 

  5. H.M. Tawancy, Enhancing the oxidation properties of gamma prime + gamma platinum bond coat by rhenium and yttrium additions for improved adhesion of thermal barrier coatings on nickel-base superalloys. Oxid. Met. 84, 491–507 (2015)

    Article  Google Scholar 

  6. H.M. Tawancy, L.M. Al-Hadhrami, A.I. Mohammed, F.K. Alyousef, H. Dafalla, Oxidation behavior of selected bond coats based on the γ′ + γ structure and their performance in thermal barrier coatings deposited on a nickel-base superalloy. Oxid. Met. 83, 417–440 (2015)

    Article  Google Scholar 

  7. P. Audigie, S. Selezneff, A.R.V. Put, C. Estournes, S. Hamadi, D. Monceau, Cyclic oxidation behavior of TBC system with a Pt-rich γ-Ni + γ′-Ni3Al bond coating made by SPS. Oxid. Met. 81, 33–45 (2014)

    Article  Google Scholar 

  8. L. Chirivi, J.R. Nicholls, Influence of surface finish on the cyclic oxidation lifetime of an EB-PVD TBC deposited on PtAl and Pt-diffused bond coats. Oxid. Met. 81, 17–31 (2014)

    Article  Google Scholar 

  9. D.K. Das, Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys. Prog. Mater Sci. 58, 151–182 (2013)

    Article  Google Scholar 

  10. V. Deodeshmukh, B. Gleeson, Effects of platinum on the hot corrosion behavior of Hf-modified gamma′-Ni3Al + gamma-Ni-based alloys. Oxid. Met. 76, 43–55 (2011)

    Article  Google Scholar 

  11. H.M. Tawancy, L.M. Al-Hadhrami, Influence of titanium in nickel-base superalloys on the performance of thermal barrier coatings utilizing γ′–γ platinum bond coats. Trans. ASME-J. Eng. For Gas Turb. Power 131, 042101 (2011)

    Article  Google Scholar 

  12. H.M. Tawancy, L.M. Al-Hadhrami, Role of platinum in aluminide coatings used in gas turbine blade applications. Trans. ASME-J. Eng. For Gas Turb. Power 132, 022103 (2010)

    Article  Google Scholar 

  13. N. Mu, T. Izumi, L. Zhang, B. Gleeson, The Development and Performance of Novel Pt + Hf-Modified γ′-Ni3Al + γ-Ni Bond Coatings for Advanced Thermal Barrier Coating Systems, in Superalloys, ed. by R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmam, E.S. Huron, S.A. Woodard (Springer, Warrendale, PA, 2008), p. 629

    Google Scholar 

  14. H.M. Tawancy, N.M. Abbas, M.O. Aboelfotoh, Effect of platinum on the oxide-to-metal adhesion in thermal barrier coating systems. J. Mater. Sci. 43, 2978–2989 (2008)

    Article  Google Scholar 

  15. Y. Zhang, J.P. Stacy, B.A. Pint, J.A. Haynes, B.T. Hazel, B.A. Nagaraj, Interdiffusion behavior of Pt-diffused γ + γ′ coatings on Ni-based alloys. Surf. Coat. Technol. 203, 417–421 (2008)

    Article  Google Scholar 

  16. B.A. Pint, J.A. Haynes, K.L. More, J.H. Schneibel, Y. Zhang, I.G. Wright, Performance of Pt-Modified Alumina-Forming Coatings and Model Alloys, in Superalloys, ed. by R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmam, E.S. Huron, S.A. Woodard (The Minerals, Metals and Materials Society, Warrendale, PA, 2008), p. 641

    Google Scholar 

  17. T. Izumi, N. Mu, L. Zhang, B. Gleeson, Effects of targeted gamma-Ni plus gamma′-Ni3Al-based coating compositions on oxidation behavior. Surf. Coat. Technol. 202, 628–631 (2007)

    Article  Google Scholar 

  18. J.P. Stacy, Y. Zhang, B.A. Pint, J.A. Haynes, P.T. Hazel, B.A. Nagaraj, Synthesis and oxidation performance of Al-enriched γ + γ′ coatings on Ni-based superalloy via secondary aluminizing. Surf. Coat. Technol. 202, 632–636 (2007)

    Article  Google Scholar 

  19. Y. Zhang, D.A. Ballard, J.P. Stacy, B.A. Pint, J.A. Haynes, Synthesis and oxidation behavior of platinum enriched γ + γ′ bond coatings in Ni-based superalloys. Surf. Coat. Technol. 201, 3857–3861 (2006)

    Article  Google Scholar 

  20. S. Hayashi, W. Wang, D.J. Sordelet, B. Gleeson, Interdiffusion behavior of Pt-modified gamma Ni + gamma′-Ni3Al alloys coupled to Ni-based alloys. Metall. Mater. Trans. A 37A, 1669–1675 (2005)

    Google Scholar 

  21. Z. Xu, G. Huang, L. He, R. Mu, K. Wang, J. Dai, Effect of grit blasting on the thermal cycling behavior of diffusion aluminide/YSZ/TBCs. J. Alloys Comp. 586, 1–9 (2014)

    Article  Google Scholar 

  22. C.R.L.K. Rao, D.C. Triverdi, Chemical and electrochemical deposition of platinum group metals and their applications. Coord. Chem. Rev. 249, 613–631 (2005)

    Article  Google Scholar 

  23. P.J. Goodhew, J. Humphreys, R. Beanland, Electron Microscopy and Analysis, 3rd edn. (Taylor and Francis, New York, 2001), p. 24

    Google Scholar 

  24. M. Levy, P. Farrell, F. Pettit, Oxidation of some advanced single-crystal nickel-base superalloys in air at 2000 F (1093 C). Corrosion 42, 708–717 (1986)

    Article  Google Scholar 

  25. H.M. Tawancy, N.M. Abbas, A.I. Al-Mana, T.N. Rhys-Jones, Thermal stability of advanced Ni-base superalloys. J. Mater. Sci. 29, 2445–2458 (1994)

    Article  Google Scholar 

  26. L.A. Cornish, R. Suss, A. Watson, S.N. Prins, Building thermodynamic database for platinum-based superalloys: Part I. Platinum Met. Rev. 51, 104–115 (2007)

    Article  Google Scholar 

  27. L.A. Cornish, R. Suss, A. Watson, S.N. Prins, Building thermodynamic database for platinum-based superalloys: Part II. Platinum Met. Rev. 53, 69–77 (2009)

    Article  Google Scholar 

  28. A. Douglas, J.H. Neethling, R. Santamarta, D. Schryvers, L.A. Cornish, Unexpected ordering behavior of Pt3Al intermetallic precipitates. J. Alloys Comp. 432, 96–102 (2007)

    Article  Google Scholar 

  29. C. Huang, Y. Yamabe-Mitarai, H. Harada, The stabilization of Pt3Al with L12 structure in Pt–Al–Ir–Nb and Al–Nb alloys. J. Alloys Comp. 366, 217–221 (2004)

    Article  Google Scholar 

  30. M. Huller, M. Wenderoth, S. Vorberg, B. Fischer, U. Glatzrl, R. Volkl, Optimization of composition and heat treatment of age-hardened Pt–Al–Cr–Ni alloys. Met. Mater. Trans. A 36A, 681–689 (2005)

    Google Scholar 

  31. X.Y. Lang, G.F. Han, B.B. Xiao, L. Gu, Z.Z. Yang, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, Q. Jiang, Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reactions. Adv. Funct. Mater. 25, 230–237 (2015)

    Article  Google Scholar 

  32. B. Gleeson, N. Mu, S. Hayashi, Compositional Factors Affecting The Establishment And Maintenance of Al2O3 scales on Ni–Al–Pt Systems. J. Mater. Sci. 44, 1704–1710 (2009)

    Article  Google Scholar 

  33. E.W. Ross, C.T. Sims, Nickel-Base Alloys, in Superalloys II, ed. by C.T. Sims, N.S. Stoloff, W.C. Hagel (John Wiley & Sons, New York, 1987), p. 97

    Google Scholar 

  34. Y. Amouyal, Z. Mao, D.N. Seidman, Effect of tantalum on the partitioning of tungsten between the γ- and γ′-phases: linking experimental and computational approaches. Acta Mater. 58, 5898–5911 (2010)

    Article  Google Scholar 

  35. G.L. Erickson, The Development and Application of CMSX-10, in Superalloys, ed. by R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford (The Minerals, Metals and Materials Society, Pittsburgh, 1996), p. 35

    Google Scholar 

  36. J.L. Smialek, G.H. Meier, High-Temperature Oxidation, in Superalloys II, ed. by C.T. Sims, N.S. Stoloff, W.C. Hagel (John Wiley and Sons, New York, 1987), p. 293

    Google Scholar 

Download references

Acknowledgments

The author is grateful for the continued support provided by King Fahd University of Petroleum and Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawancy, H.M. On the Evolution of Microstructure of Gamma Prime + Gamma Platinum Bond Coats Deposited on Ni-Based Superalloys and Their Oxidation Resistance: Role of Superalloy Substrate. Metallogr. Microstruct. Anal. 6, 315–323 (2017). https://doi.org/10.1007/s13632-017-0364-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-017-0364-7

Keywords

Navigation