Skip to main content
Log in

In vitro and in silico inhibition of α-amylase, α-glucosidase, and aldose reductase by the leaf and callus extracts of Vernonia anthelmintica (L.) Willd.

  • Research Article
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

In the present study, the leaf and callus extracts of Vernonia anthelmintica prepared in three different solvents (methanol, ethyl acetate, and chloroform) were assessed for inhibition of α-amylase (EC 3.2.1.1), α-glucosidase (EC 3.2.1.20) and aldose reductase (EC 1.1.1.21). Both the leaf and callus extracts showed remarkable inhibition against these enzymes. Alpha-amylase inhibition was the highest in ethyl acetate extract of calli and methanolic extract of leaves. Ethyl acetate extract of both leaf and calli showed significant alpha-glucosidase and aldose reductase inhibition. HR-LCMS analysis of ethyl acetate fraction of leaf extract showed the presence of the flavonol rhamnetin. Also, the HPLC chromatogram revealed the presence of rhamnetin in callus extract. Further, in silico docking studies of rhamnetin was done against the above-mentioned enzymes. The in silico analysis revealed that compound rhamnetin showed good enzyme inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adewole E, Ojo A, Ogunmodede OT, Adewumi DF, Omoaghe AO, Jamshed I (2018) Characterisation and evaluation of Vernonia amygdalina extracts for its antidiabetic potential. Int J Sci 7(1):31–38

    Google Scholar 

  • Alex T, Mansuri S, Dongre G, Mandloi A, Dubey K, Malviya N (2019) Evaluation and comparative study of lens aldose reductase inhibitory activity of leaves extracts of Merremia emarginata, Permotrema perlatum, Tridax procumbens and Euphorbia prostrata: potential for diabetic cataract treatment. J Drug Deliv Ther 9(2-A):87–88

    CAS  Google Scholar 

  • Anh HL, Vinh LB, Lien LT, Cuong PV, Arai M, Ha TP, Lin HN, Dat TT, Cuong LC, Kim YH (2019) In vitro study on α-amylase inhibitory and α-glucosidase of a new stigmastane-type steroid saponin from the leaves of Vernonia amygdalina. Nat Prod Res 14:1–7

    Google Scholar 

  • Ani V, Naidu KA (2008) Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. Eur Food Res Technol 226(4):897–903

    CAS  Google Scholar 

  • Arya A, Achoui M, Cheah SC, Abdelwahab SI, Narrima P, Mohan S, Mohd MA (2012) Chloroform fraction of Centratherum anthelminticum (L.) seed inhibits tumour necrosis factor alpha and exhibits pleotropic bioactivities: inhibitory role in human tumour cells. Evid Based Complement Alternat Med 2012 (1–11) Article ID 627256 https://doi.org/10.1155/2012/627256

  • Ashok P, Koti BC, Thippeswamy AHM, Tikare VP, Dabadi P, Viswanathaswamy AHM (2010) Evaluation of anti inflammatory activity of Centratherum anthelminticum (L.) Kuntze seed. Indian J Pharm Sci 72(6):697

    PubMed  PubMed Central  Google Scholar 

  • Bajpai A, Ojha JK, Sant HR (1995) Medicobotany of the Varanasi District, Uttar Pradesh. India Int J Pharmacogn 33(2):172–176

    Google Scholar 

  • Bhatia D, Gupta MK, Bharadwaj A, Pathak M, Kathiwas G, Singh M (2008) Antidiabetic activity of Centratherum anthelminticum kuntze on alloxan induced diabetic rats. Pharmacol Online 3:1–5

    Google Scholar 

  • Blake JF (2000) Chemo informatics-predicting the physicochemical properties of “drug-like” molecules. Curr Opin Biotechnol 11(1):104–107

    CAS  PubMed  Google Scholar 

  • Chai TT, Khoo CS, Tee CS, Wong FC (2016) Alpha-glucosidase inhibitory and antioxidant potential of antidiabetic herb Alternanthera sessilis: comparative analyses of leaf and callus solvent fractions. Pharmacogn Mag 12(48):253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chico LK, Van Eldik LJ, Watterson DM (2009) Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 8(11):892–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey K, Dubey R, Gupta RA, Gupta A (2019) In vitro evaluation of Aldose reductase inhibitory potential of Bougainvillea spectabilis. Int Pharm Pharm Sci 10(4):6216–6218

  • Elya B, Basah K, Mun’im A, Yuliastuti W, Bangun A, Septiana EK (2012) Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Biomed Biotechnol. https://doi.org/10.1155/2012/281078

    Article  Google Scholar 

  • Fatima SS, Rajasekhar MD, Kumar KV, Kumar MTS, Babu KR, Rao CA (2010) Antidiabetic and anti hyperlipidemic activity of ethyl acetate: isopropanol (1:1) fraction of Vernonia anthelmintica seeds in streptozotocin induced diabetic rats. Food Chem Toxicol 48(2):495–501

    CAS  PubMed  Google Scholar 

  • Fatmawati S, Shimizu K (2019) Antioxidant and aldose reductase inhibitory activity of Piper betle extracts. Proc Pak Acad Sci B Life Environ Sci 56(3):75–82

    Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Grossi-de-Sá MF (2002) Plant α amylase inhibitors and their interaction with insect α amylases: Structure, function, and potential for crop protection. Eur J Biochem 269(2):397–412

    CAS  PubMed  Google Scholar 

  • Franco EP, Contesini FJ, Lima da Silva B, de Piloto A, Fernandes AM, Wielewski Leme C, Goncalves Cirino JP, Bueno Campos PR, de Oliveira CP (2020) Enzyme-assisted modification of flavonoids from Matricaria chamomilla: antioxidant activity and inhibitory effect on digestive enzymes. J Enzyme Inhib Med Chem 35(1):42–49

    CAS  PubMed  Google Scholar 

  • Garcia AR, Oliveira DM, Claudia F, Amaral A, Jesus JB, Rennó Sodero AC, Souza AM, Supuran CT, Vermelho AB, Rodrigues IA, Pinheiro AS (2019) Leishmania infantum arginase: biochemical characterisation and inhibition by naturally occurring phenolic substances. J Enzyme Inhib Med Chem 34(1):1100–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong T, Yang X, Bai F, Li D, Zhao T, Zhang J, Sun L, Guo Y (2020) Young apple polyphenols as natural α-glucosidase inhibitors: In vitro and in silico studies. Bioorg Chem 96:103625

    CAS  PubMed  Google Scholar 

  • Groop L, Forsblom C, Lehtovirta M (1997) Characterisation of the prediabetic state. Am J Hypertens 10(S6):172–180

    Google Scholar 

  • Gutierrez RM, Velazquez EG (2020) Glucopyranoside flavonoids isolated from leaves of Spinacia oleracea (spinach) inhibit the formation of advanced glycation end products (AGEs) and aldose reductase activity (RLAR). Biomed Pharmacother 128:110299

    Google Scholar 

  • Habtamu A, Melaku Y (2018) Antibacterial and antioxidant compounds from the flower extracts of Vernonia amygdalina. Adv Pharmacol Sci. https://doi.org/10.1155/2018/4083736

    Article  PubMed  PubMed Central  Google Scholar 

  • Halder N, Joshi S, Gupta SK (2003) Lens aldose reductase inhibiting potential of some indigenous plants. J Ethnopharmacol 86(1):113–116

    CAS  PubMed  Google Scholar 

  • Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240(2):877–882

    CAS  PubMed  Google Scholar 

  • Hazeena VN, Sruthi CR, Soumiya CK, Haritha VH, Jayachandran K, Anie Y (2016) Vernonia anthelmintica (L.) Willd. prevents sorbitol accumulation through aldose reductase inhibition. Sch Acad J Biosci 4(10A):787–795

    CAS  Google Scholar 

  • Igbinidu GO (2019) GC–MS analysis, phytochemical screening and In vitro α-amylase and α-glucosidase inhibitory activities of Vernonia amygdalina root extract and fractions. J Pharmacogn Phytochem 8(4):2125–2131

    Google Scholar 

  • Iqbal Z, Lateef M, Jabbar A, Akhtar MS, Khan MN (2006) Anthelmintic Activity of Vernonia anthelmintica Seeds against Trichostrongylid Nematodes of Sheep. Pharm Bio 144(8):563–567

    Google Scholar 

  • Jain SP, Puri HS (1984) Ethnomedicinal plants of Jaunsar-bawar hills, Uttar Pradesh, India. J Ethnopharmacol 12(2):213–222

    CAS  PubMed  Google Scholar 

  • Javed IJAZ, Akhtar MS (1990) Screening of Vernonia anthelmintica seed and Embelia ribes fruit mixed in equal parts against gastrointestinal nematodes. Pak J Pharm Sci 3(2):69–74

    CAS  PubMed  Google Scholar 

  • Jnawali HN, Lee E, Jeong KW, Shin A, Heo YS, Kim Y (2014) Anti-inflammatory activity of rhamnetin and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. J Nat Prod 77(2):258–263

    CAS  PubMed  Google Scholar 

  • Jung HA, Islam MN, Kwon YS, Jin SE, Son YK, Park JJ, Sohn HS, Choi JS (2011) Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem Toxicol 49(2):376–384

    CAS  PubMed  Google Scholar 

  • Keerthana G, Kalaivani MK, Sumathy A (2013) In Vitro α-amylase inhibitory and antioxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J Pharm Clin Res 6(4):32–36

    Google Scholar 

  • Kerns E, Di L (2008) Drug-like properties: concepts, structure design, and methods: from ADME to Toxicity optimisation. Academic Press, Cambridge

    Google Scholar 

  • Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalam B (2015) Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). Biomed Res Int 2015(1–11) Article ID 643285. https://doi.org/10.1155/2015/643285

  • Kidane Y, Bokrezion T, Mebrahtu J, Mehari M, Gebreab YB, Fessehaye N, Achila OO (2018) In vitro inhibition of-amylase and-glucosidase by extracts from psiadia punctulata and meriandra bengalensis. Evid Based Complement Altern Med 2018(1–9) Article ID 2164345. https://doi.org/10.1155/2018/2164345

  • Kim HM, Mok SY, Lee JM, Cho EJ, Choi K, Ku JJ, Lee SH (2010) Inhibition of aldose reductase from rat lenses by methanol extracts from Korean folk plants. Nat Prod Sci 16(4):285–290

    CAS  Google Scholar 

  • Kinoshita JH, Merola LO, Satoh K, Dikmak E (1962) Osmotic changes caused by the accumulation of dulcitol in the lenses of rats fed with galactose. Nature 194(4833):1085

    CAS  PubMed  Google Scholar 

  • Lebovitz HE (1997) Alpha-glucosidase inhibitors. Endocrin Metab Clin 26(3):539–551

    CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    CAS  Google Scholar 

  • Mallikharjuna PB, Rajanna LN, Seetharam YN, Sharanabasappa GK (2007) Phytochemical studies of Strychnos potatorum Lf-A medicinal plant. J Chem 4(4):510–518

    CAS  Google Scholar 

  • Manohar V, Talpur NA, Echard BW, Lieberman S, Preuss HG (2002) Effects of a water—soluble extract of maitake mushroom on circulating glucose/insulin concentrations in KK mice. Diabetes Obes Metab 4(1):43–48

    CAS  PubMed  Google Scholar 

  • Matsui T, Yoshimoto C, Osajima K, Oki T, Osajima Y (1996) In vitro survey of α-glucosidase inhibitory food components. Biosci Biotechnol Biochem 60(12):2019–2022

    CAS  PubMed  Google Scholar 

  • Mehta BK, Mehta D, Verma M (2005) Novel steroids from the seeds of Centratherum anthelminticum. Nat Prod Res 19:435–442

    CAS  PubMed  Google Scholar 

  • Moein S, Pimoradloo E, Moein M, Vessal M (2017) Evaluation of antioxidant potentials and α-amylase inhibition of different fractions of labiatae plants extracts: as a model of antidiabetic compounds properties. BioMed Res Int Article ID. https://doi.org/10.1155/2017/7319504

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    CAS  Google Scholar 

  • Nair SS, Kavrekar V, Mishra A (2013) In vitro studies on α-amylase and α-glucosidase inhibitory activities of selected plant extracts. Euro J Exp Bio 3(1):128–132

    Google Scholar 

  • Osadebe PO, Omeje EO, Uzor PF, David EK, Obiorah DC (2010) Seasonal variation for the antidiabetic activity of Loranthus micranthus methanol extract. Asian Pac J Trop Med 3(3):196–199

    Google Scholar 

  • Paramashivam SK, Elayaperumal K, Bhagavan Natarajan B, Devi Ramamoorthy M, Balasubramanian S, Dhiraviam KN (2015) In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bio Inf 11(2):73

    Google Scholar 

  • Parsaeimehr A, Sargsyan E, Javidnia KA (2010) Comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules 15(3):1668–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel DK, Kumar R, Kumar M, Sairam K, Hemalatha S (2012) Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell Asian Pac J Trop 2(2):134–139

    CAS  Google Scholar 

  • Pracheta SV, Paliwal R, Sharma S (2011) In vitro free radical scavenging and antioxidant potential of ethanolic extract of Euphorbia neriifolia Linn. Int J Pharm Pharm Sci 3(1):238–242

    Google Scholar 

  • Quattrini L, La Motta C (2019) Aldose reductase inhibitors: 2013-present. Expert Opin Ther Pat 29(3):199–213

    CAS  PubMed  Google Scholar 

  • Rajan M, Feba KS, Chandran V, Shahena S, Mathew L (2020a) Enhancement of rhamnetin production in Vernonia anthelmintica (L.) Willd. cell suspension cultures by eliciting with methyl jasmonate and salicylic acid. Physiol Mol Biol Plants 26(7):1531–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan M, Soororbhavan S, Chandran V, Mathew L (2020b) Callus induction, indirect organogenesis and plantlet regeneration from different explants of Vernonia anthelmintica (L.) Willd. J Appl Biol Biotechnol 8(03):17–22

    CAS  Google Scholar 

  • Rana ZH, Alam MK, Akhtaruzzaman M (2019) Nutritional composition, total phenolic content, antioxidant and α-amylase inhibitory activities of different fractions of selected wild edible plants. Antioxidants 8(7):203

    CAS  PubMed Central  Google Scholar 

  • Sai K, Thapa R, Devkota HP, Joshi KR (2019) Phytochemical screening, free radical scavenging and α-amylase inhibitory activities of selected medicinal plants from western Nepal. Medicines 6(2):70

    CAS  PubMed Central  Google Scholar 

  • Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24(5):417–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharififar F, Dehghn-Nudeh G, Mirtajaldini M (2009) Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem 112(4):885–888

    CAS  Google Scholar 

  • Sheel R, Nisha K, Kumar J (2014) Preliminary phytochemical screening of methanolic extract of Clerodendron infortunatum. IOSR J Appl Chem 7(1):10–13

    Google Scholar 

  • Sivaraman D, Panneerselvam P (2015) Screening of potential glycogen synthase kinase-3β inhibitors from herbal lead by in silico docking technique. Int J ChemTech Res 8(6):834–842

    CAS  Google Scholar 

  • Sonawane A, Srivastava RS, Sanghavi N, Malode Y, Chavan B (2014) Antidiabetic activity of Tridax procumbens. J Sci Innov Res 3(2):221–226

    Google Scholar 

  • Sun L, Warren FJ, Gidley MJ (2019) Natural products for glycaemic control: polyphenols as inhibitors of α-amylase. Trends Food Sci Technol 91:262–273

    CAS  Google Scholar 

  • Tuerxuntayi A, Liu YQ, Tulake A, Kabas M, Eblimit A, Aisa HA (2014) Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement Altern Med 14(1):166

    PubMed  PubMed Central  Google Scholar 

  • Unuofin JO, Otunola GA, Afolayan AJ (2019) Inhibition of key enzymes linked to obesity and cytotoxic activities of whole plant extracts of Vernonia mesplilfolia less. Processes 7(11):841

    CAS  Google Scholar 

  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    CAS  PubMed  Google Scholar 

  • Yugandhar P, Kumar KK, Neeraja P, Savithramma N (2017) Isolation, characterisation and in silico docking studies of synergistic estrogen receptor anticancer polyphenols from Syzygium alternifolium (Wt.) Walp. J Intercult Ethnopharmacol 6(3):296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    CAS  Google Scholar 

Download references

Acknowledgements

The research work was carried out at the School of Biosciences (DST-PURSE supported), Mahatma Gandhi University, Kottayam, Kerala, India, with the financial support of Kerala State Biodiversity Board. Instrumentation support for analysis of the sample was provided by the Department of Biotechnology, India/MSUB programme, KSCSTE-SARD programme and Inter-University Centre for instrumentation (DST-PURSE) Mahatma Gandhi University. The Grant Number is 838/A1/2016/KSBB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linu Mathew.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

Maya Rajan has no conflict of interest. Vinaya Chandran has no conflict of interest. S. Shahena has no conflict of interest. Y. Anie has no conflict of interest. Linu Mathew has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, M., Chandran, V., Shahena, S. et al. In vitro and in silico inhibition of α-amylase, α-glucosidase, and aldose reductase by the leaf and callus extracts of Vernonia anthelmintica (L.) Willd.. ADV TRADIT MED (ADTM) 22, 125–139 (2022). https://doi.org/10.1007/s13596-020-00533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-020-00533-8

Keywords

Navigation