Skip to main content

Advertisement

Log in

Protective effects of the Sophorae Fructus on cognitive impairment and neuroinflammatory alteration in an Aβ1-42-infused Alzheimer’s disease mouse model

  • Research Article
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), a common cause of neuropsychological impairment, is characterized by the deposition of a neurotoxic and fibrillogenic form of the β-amyloid (Aβ) peptide, Aβ1–42. The present study showed the therapeutic efficacy of Sophorae Fructu (KH034) on Aβ1–42-infused memory dysfunction in mice. KH034 treatment significantly recuperated deficit in learning and memory of the Aβ1–42 –infused mice, as determined by Y-maze and Morris water maze test. Through biochemical analysis test, we suggested that KH034 treatment ameliorated Aβ accumulation and neuronal cell death in the cortex and hippocampus of the mice brain. Furthermore, KH034 treatment enhanced neuron-specific nuclear protein (NeuN) and brain derived neurotrophic factor (BDNF) levels. Moreover, KH034 treatment activated the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cAMP response element-binding protein (CREB) in the hippocampus. Thus, KH034 treatment inhibited the activity of proteins associated with neurodegeneration in AD through its anti-amyloidogenic, anti-inflammatory and pro-survival effect. These results suggest that KH034 treatment improves cognitive function and inhibits amyloidogenesis by the prevention of neuroinflammation in Aβ1–42 –infused mice. Therefore, KH034 may be useful in the prevention and treatment of neurodegenerative disorders such as Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arunrungvichian K, Boonyarat C, Fokin VV, Taylor P, Vajragupta O (2015) Cognitive improvements in a mouse model with substituted 1,2,3-triazole agonists for nicotinic acetylcholine receptors. ACS Chem Neurosci 6:1331–1340. doi:10.1021/acschemneuro.5b00059

    Article  CAS  PubMed  Google Scholar 

  • Asai M, Iwata N, Yoshikawa A, Aizaki Y, Ishiura S, Saido TC, Maruyama K (2007) Berberine alters the processing of Alzheimer's amyloid precursor protein to decrease Abeta secretion. Biochem Biophys Res Commun 352:498–502. doi:10.1016/j.bbrc.2006.11.043

    Article  CAS  PubMed  Google Scholar 

  • Asuni AA, Guridi M, Pankiewicz JE, Sanchez S, Sadowski MJ (2014) Modulation of amyloid precursor protein expression reduces beta-amyloid deposition in a mouse model. Ann Neurol 75:684–699. doi:10.1002/ana.24149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo MI et al (2013) The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain 9:53. doi:10.1186/1744-8069-9-53

    Article  PubMed  PubMed Central  Google Scholar 

  • Beauquis J, Vinuesa A, Pomilio C, Pavia P, Galvan V, Saravia F (2014) Neuronal and glial alterations, increased anxiety, and cognitive impairment before hippocampal amyloid deposition in PDAPP mice, model of Alzheimer's disease. Hippocampus 24:257–269. doi:10.1002/hipo.22219

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar K et al (2014) Microglial derived tumor necrosis factor-alpha drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis 62:273–285. doi:10.1016/j.nbd.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  • Chang L et al (2012) Simultaneous determination and pharmacokinetic study of six flavonoids from Fructus Sophorae extract in rat plasma by LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 904:59–64. doi:10.1016/j.jchromb.2012.07.015

    Article  CAS  Google Scholar 

  • Choi DY et al (2012) Obovatol improves cognitive functions in animal models for Alzheimer's disease. J Neurochem 120:1048–1059. doi:10.1111/j.1471-4159.2011.07642.x

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz A, Limon D, Chavez R, Zenteno E, Guevara J (2012) Abeta25-35 injection into the temporal cortex induces chronic inflammation that contributes to neurodegeneration and spatial memory impairment in rats. J Alzheimer's Dis: JAD 30:505–522. doi:10.3233/jad-2012-111979

    CAS  Google Scholar 

  • Doody RS (1999) Clinical profile of donepezil in the treatment of Alzheimer's disease. Gerontology 45(Suppl 1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Easton A et al (2013) Effects of sub-chronic donepezil on brain Abeta and cognition in a mouse model of Alzheimer's disease. Psychopharmacology 230:279–289. doi:10.1007/s00213-013-3152-3

    Article  CAS  PubMed  Google Scholar 

  • Garai K, Crick SL, Mustafi SM, Frieden C (2009) Expression and purification of amyloid-beta peptides from Escherichia coli. Protein Expr Purif 66:107–112. doi:10.1016/j.pep.2009.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643. doi:10.1074/jbc.R800016200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidaka N, Suemaru K, Takechi K, Li B, Araki H (2011) Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama 65:269–277

    CAS  PubMed  Google Scholar 

  • Inglis F (2002) The tolerability and safety of cholinesterase inhibitors in the treatment of dementia. Int J Clin Pract Suppl 127:45–63

    CAS  Google Scholar 

  • Jacobsen FM, Comas-Diaz L (1999) Donepezil for psychotropic-induced memory loss. The J Clin Psychiatry 60:698–704

    Article  CAS  PubMed  Google Scholar 

  • Joo SS, Kang HC, Lee MW, Choi YW, Lee DI (2003) Inhibition of IL-1beta and IL-6 in osteoblast-like cell by isoflavones extracted from Sophorae fructus. Arch Pharm Res 26:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Joo SS, Kwon SH, Hwang KW, Lee DI (2005) Improvement of menopausal signs by isoflavones derived from Sophorae fructus in ovariectomized female rats and the antioxidant potentials in BV2 cells. Arch Pharm Res 28:566–572

    Article  CAS  PubMed  Google Scholar 

  • Kamphuis W et al (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 7:e42823. doi:10.1371/journal.pone.0042823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TI et al (2009) L-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radic Biol Med 47:1601–1610. doi:10.1016/j.freeradbiomed.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  • Kim BK, Shin MS, Kim CJ, Baek SB, Ko YC, Kim YP (2014) Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. Journal of exercise rehabilitation 10:2-8. doi:10.12965/jer.140086

  • Kimura Y, Fujita Y, Shibata K, Mori M, Yamashita T (2013) Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling. PLoS One 8:e75760. doi:10.1371/journal.pone.0075760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kite GC, Veitch NC, Boalch ME, Lewis GP, Leon CJ, Simmonds MS (2009) Flavonol tetraglycosides from fruits of Styphnolobium japonicum (Leguminosae) and the authentication of Fructus Sophorae and Flos Sophorae. Phytochemistry 70:785–794. doi:10.1016/j.phytochem.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  • Kulijewicz-Nawrot M, Verkhratsky A, Chvatal A, Sykova E, Rodriguez JJ (2012) Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease. J Anat 221:252–262. doi:10.1111/j.1469-7580.2012.01536.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuperstein F, Yavin E (2002) ERK activation and nuclear translocation in amyloid-beta peptide- and iron-stressed neuronal cell cultures. Eur J Neurosci 16:44–54

    Article  PubMed  Google Scholar 

  • Lanz TA, Carter DB, Merchant KM (2003) Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol Dis 13:246–253. doi:10.1016/s0969-9961(03)00079-2

    Article  CAS  PubMed  Google Scholar 

  • Lesne S et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357. doi:10.1038/nature04533

    Article  CAS  PubMed  Google Scholar 

  • Lim YY et al (2013) BDNF Val66Met, Abeta amyloid, and cognitive decline in preclinical Alzheimer's disease. Neurobiol Aging 34:2457–2464. doi:10.1016/j.neurobiolaging.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  • Lima Cavendish R et al (2015) Antinociceptive and anti-inflammatory effects of Brazilian red propolis extract and formononetin in rodents. J Ethnopharmacol 173:127–133. doi:10.1016/j.jep.2015.07.022

    Article  PubMed  Google Scholar 

  • Liu R et al (2014b) Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits. Neurobiol Aging 35:1275–1285. doi:10.1016/j.neurobiolaging.2013.12.031

    Article  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development (Cambridge, England) 116:201-211

  • Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease. Brain Res Mol Brain Res 109:45–55

    Article  CAS  PubMed  Google Scholar 

  • Prvulovic D, Schneider B (2014) Pharmacokinetic and pharmacodynamic evaluation of donepezil for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 10:1039–1050. doi:10.1517/17425255.2014.915028

    Article  CAS  PubMed  Google Scholar 

  • Rao AA (2013) Views and opinion on BDNF as a target for diabetic cognitive dysfunction. Bioinformation 9:551–554. doi:10.6026/97320630009551

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohn TT, Catlin LW, Poon WW (2013) Caspase-cleaved glial fibrillary acidic protein within cerebellar white matter of the Alzheimer's disease brain. Int J Clin Exp Pathol 6:41–48

    CAS  PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J (2009) ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation 6:41. doi:10.1186/1742-2094-6-41

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science (New York, NY) 298:789-791. doi:10.1126/science.1074069

  • Shim JG et al (2005) Bone loss preventing effect of Sophorae Fructus on ovariectomized rats. Arch Pharm Res 28:106–110

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Hashimoto T, Roe AD, Hori Y, Spires-Jones TL, Hyman BT (2013) Brain interstitial oligomeric amyloid beta increases with age and is resistant to clearance from brain in a mouse model of Alzheimer's disease. FASEB J Off Publ Fed Am Soc Exp Biol 27:3239–3248. doi:10.1096/fj.13-229666

    CAS  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. doi:10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker Z et al (2002) Differentiation of dementia with Lewy bodies from Alzheimer's disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 73:134–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409. doi:10.1002/jnr.10655

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2014) 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology: Off Publ Am Coll Neuropsychopharmacology 39:638–650. doi:10.1038/npp.2013.243

    Article  Google Scholar 

  • Zhu QW, Tang H, Hou WJ (2002) [effects of wide band frequency noise on ERK, GDNF and ABR threshold in the different area of brain of AD rats poisoned by glutamatic acid]. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology 18:324-328

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2013R1A1A1063477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hun Cho.

Ethics declarations

Ethical Statement

All procedures performed in studies involving animals were in accordance with the ethical standards of the the Kyung Hee University Medical Center Institutional Animal Care (approver number; KHMC-IACUC 2015–31).

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HY., Kwon, Y. & Cho, SH. Protective effects of the Sophorae Fructus on cognitive impairment and neuroinflammatory alteration in an Aβ1-42-infused Alzheimer’s disease mouse model. Orient Pharm Exp Med 17, 255–268 (2017). https://doi.org/10.1007/s13596-017-0267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-017-0267-9

Keywords

Navigation