Agronomy for Sustainable Development

, Volume 34, Issue 4, pp 879–886 | Cite as

High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production

  • Mohammad R. Sabzalian
  • Parisa Heydarizadeh
  • Morteza Zahedi
  • Amin Boroomand
  • Mehran Agharokh
  • Mohammad R. Sahba
  • Benoît Schoefs
Research Article

Abstract

In urban agriculture, plant growth is limited by the availability of light. Light emitting diodes (LED) could provide specific quality and quantity of light overcoming existing limitations for normal plant growth. However, there have been very few investigations on the applications of LED in incubators and plant growth chambers. The devices fabricated in this study, were lighted with 100 % red, 100 % blue, 70 % red plus 30 % blue, or 100 % white LED. We cultivated Mentha piperita, Mentha spicata and Mentha longifolia, lentil, basil, and four ornamentals to test the effect of various LED lights on plants productivity compared with field and greenhouse conditions. Our results show that 70/30 % red-blue LED light increased Mentha essential oil yield up to four times along with increases in plant photosynthesis and fresh weight compared with field condition. The red-blue LED incubator also led to a better growth of lentil and basil and to higher flower buds and less days to flowering for pot flowers versus greenhouse conditions. Our findings demonstrate that LED could improve economic characteristics of plant species by probably stimulating plant metabolism.

Keywords

Essential oil Incubator Light emitting diodes Mentha Pot flower Vegetable 

References

  1. Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 20:498–502. doi:10.1007/s00425- 004-1418-z CrossRefGoogle Scholar
  2. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31. doi:10.1105/tpc.015958 PubMedCrossRefPubMedCentralGoogle Scholar
  3. British Pharmacopoeia, (1980) H. M. S. Office. 2, London, pp 109–110Google Scholar
  4. Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci 120:808–813PubMedGoogle Scholar
  5. Colquhoun TA, Schwieterman ML, Gilbert JL, Jaworski EA, Langer KM, Jones CR, Rushing GV, Hunter TM, Olmstead J, Clark D, Folta KM (2013) Light modulation of volatile organic compounds from petunia flowers and select fruits. Postharvest Biol Technol 86:37–44. doi:10.1016/j.postharvbio.2013.06.013 CrossRefGoogle Scholar
  6. Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Phil Trans R Soc B 20130243. doi:10.1098/rstb.2013.0243
  7. Delepoulle S, Renaud C, Chelle M (2008) Improving light position in a growth chamber through the use of a genetic algorithm. In: Plemenos D, Miaoulis G (eds), Artificial Intelligence Techniques for Computer Graphics Studies in Computational Intelligence, Springer, Berlin, Heidelberg, pp. 67-82Google Scholar
  8. Duong TN, Hong LTA, Watanabe H, Goi M, Tanaka M (2002) Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (LED) irradiation source. Acta Horticult 575:117–124Google Scholar
  9. Folta KM, Koss LL, McMorrow R, Kim H-H, Kenitz JD, Wheeler R, Sager JC (2005) Design and fabrication of adjustable red-green-blue LED light arrays for plant research. BMC Plant Biol. 5:17. doi: 10.1186/1471-2229-5-17
  10. Goins GD, Yorio NC, Sanwo MM, Brown CS (1997) Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48:1407–1413PubMedCrossRefGoogle Scholar
  11. Heo JW, Lee CW, Murthy HN, Paek KY (2003) Influence of light quality and photoperiod on flowering of Cyclamen persicum Mill. cv. ‘Dixie White’. Plant Growth Regul 40:7–10. doi:10.1023/a:1023096909497 CrossRefGoogle Scholar
  12. Heydarizadeh P, Zahedi M, Sabzalian MR, Ataii E (2013) Mycorrhizal infection, essential oil content and morpho-phenological characteristics variability in three mint species. Sci Hortic 153:136–142. doi:10.1016/j.scienta.2013.01.014 CrossRefGoogle Scholar
  13. Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S (2006) Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng 102:442–446. doi:10.1263/jbb.102.442 PubMedCrossRefGoogle Scholar
  14. Kurilcik A, Miklusyte-Canova R, Dapkuniene S, Zilinskaite S, Kurilcik G, Tamulaitis G, Duchovskisand P, Zukauskas A (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 2:161–167. doi:10.2478/s11535-008-0006-9 CrossRefGoogle Scholar
  15. Lian M-L, Murthy HN, Paek K-Y (2002) Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Sci Hortic 94:365–370. doi:10.1016/S0304-4238(01)00385-5 CrossRefGoogle Scholar
  16. Lin C (2000) Plant blue-light receptors. Trends Plant Sci 5:337–342PubMedCrossRefGoogle Scholar
  17. Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. PNAS 101:9897–9902. doi:10.1073/pnas.0400935101 PubMedCrossRefPubMedCentralGoogle Scholar
  18. Martineau V, Lefsrud M, Tahera Nazanin M, Kopsell DA (2012) Comparison of light-emitting diode and high-pressure sodium light treatments for hydroponics growth of Boston lettuce. Hortscience 47:477–482Google Scholar
  19. Nhut DT, Takamura NT, Watanabe H, Tanaka M (2000) Light emitting diodes (LEDs) as a radiation source for micropropagation of strawberry. In: Kubota C, Chun C (eds.), Transplant production in the 21st century, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 114–118Google Scholar
  20. Okamoto K, Yanagi T, Kondo S (1997) Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Horticult 435:149–157Google Scholar
  21. Poudel PR, Kataoka I, Mochioka R (2008) Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult 92:147–153. doi:10.1007/s11240-007-9317-1 CrossRefGoogle Scholar
  22. Roh MS, Lawson RH (1996) Requirements for new floral crops-perspectives for the United States of America. Acta Horticult 454:29–38Google Scholar
  23. Runkle ES, Heins RD (2001) Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hortic Sci 126:275–282Google Scholar
  24. SAS Institute, Inc (1999) SAS/STAT User’s Guide. SAS Institute, Inc, CaryGoogle Scholar
  25. Schaer JA, Mandoli DF, Briggs WR (1983) Phytochrome-mediated cellular photomorphogenesis. Plant Physiol 72:706–712PubMedCrossRefPubMedCentralGoogle Scholar
  26. Schoefs B (2002) Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci Technol 13:361–371. doi:10.1016/S0924- 2244(02)00182-6 CrossRefGoogle Scholar
  27. Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247. doi:10.1146/annurev.arplant.57.032905.105434 PubMedCrossRefGoogle Scholar
  28. Singh AK (2006) Flower crops: cultivation and management. New India Publishing Agency, PitampuramGoogle Scholar
  29. Tamulaitis G, Duchovskis P, Bliznikas Z, Breive K, Ulinskaite R, Brazaityte A, Novickovas A, Zukauskas A (2005) High-power light-emitting diode based facility for plant cultivation. J Phys D Appl Phys 38:3182–3187. doi:10.1088/0022-3727/38/17/S20 CrossRefGoogle Scholar
  30. Wang C-Y, Fub C-C, Liu Y-C (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25. doi:10.1016/j.bej.2007.03.004 CrossRefGoogle Scholar
  31. Wu M-C, Hou C-Y, Jiang C-M, Wang Y-T, Wang C-Y, Chen H-H, Chang H-M (2007) Novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753–1758. doi:10.1016/j.foodchem.2006.02.010 CrossRefGoogle Scholar
  32. Yam FK, Hassan Z (2005) Innovative advances in LED technology. Microelectron J 36:129–137. doi:10.1016/j.mejo.2004.11.008 CrossRefGoogle Scholar
  33. Yamaoka Y, Carmona ML, Oota S (2004) Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under super-bright red and blue light-emitting diodes. Biosci Biotechnol Biochem 68:1594–1597PubMedCrossRefGoogle Scholar
  34. Yanagi T, Okamoto K (1997) Utilization of super-bright light emitting diodes as an artificial light source for plant growth. Acta Horticult 418:223–228Google Scholar
  35. Yeh N, Chung J-P (2009) High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energ Rev 13:2175–2180. doi:10.1016/j.mejo.2004.11.008 CrossRefGoogle Scholar
  36. Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC (2001) Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. Hortscience 36:380–383PubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France 2014

Authors and Affiliations

  • Mohammad R. Sabzalian
    • 1
  • Parisa Heydarizadeh
    • 1
    • 4
  • Morteza Zahedi
    • 1
  • Amin Boroomand
    • 2
  • Mehran Agharokh
    • 1
  • Mohammad R. Sahba
    • 3
  • Benoît Schoefs
    • 4
  1. 1.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Biocomputing Group, Department of BiologyUniversity of BolognaBolognaItaly
  3. 3.Arvin Tajhiz Espadana CompanyIsfahan Science and Technology TownIsfahanIran
  4. 4.MicroMar, Mer Molécules Santé, IUML – FR 3473 CNRSUniversity of Le MansLe MansFrance

Personalised recommendations