Skip to main content
Log in

High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

In urban agriculture, plant growth is limited by the availability of light. Light emitting diodes (LED) could provide specific quality and quantity of light overcoming existing limitations for normal plant growth. However, there have been very few investigations on the applications of LED in incubators and plant growth chambers. The devices fabricated in this study, were lighted with 100 % red, 100 % blue, 70 % red plus 30 % blue, or 100 % white LED. We cultivated Mentha piperita, Mentha spicata and Mentha longifolia, lentil, basil, and four ornamentals to test the effect of various LED lights on plants productivity compared with field and greenhouse conditions. Our results show that 70/30 % red-blue LED light increased Mentha essential oil yield up to four times along with increases in plant photosynthesis and fresh weight compared with field condition. The red-blue LED incubator also led to a better growth of lentil and basil and to higher flower buds and less days to flowering for pot flowers versus greenhouse conditions. Our findings demonstrate that LED could improve economic characteristics of plant species by probably stimulating plant metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 20:498–502. doi:10.1007/s00425- 004-1418-z

    Article  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31. doi:10.1105/tpc.015958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • British Pharmacopoeia, (1980) H. M. S. Office. 2, London, pp 109–110

  • Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci 120:808–813

    PubMed  CAS  Google Scholar 

  • Colquhoun TA, Schwieterman ML, Gilbert JL, Jaworski EA, Langer KM, Jones CR, Rushing GV, Hunter TM, Olmstead J, Clark D, Folta KM (2013) Light modulation of volatile organic compounds from petunia flowers and select fruits. Postharvest Biol Technol 86:37–44. doi:10.1016/j.postharvbio.2013.06.013

    Article  CAS  Google Scholar 

  • Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Phil Trans R Soc B 20130243. doi:10.1098/rstb.2013.0243

  • Delepoulle S, Renaud C, Chelle M (2008) Improving light position in a growth chamber through the use of a genetic algorithm. In: Plemenos D, Miaoulis G (eds), Artificial Intelligence Techniques for Computer Graphics Studies in Computational Intelligence, Springer, Berlin, Heidelberg, pp. 67-82

  • Duong TN, Hong LTA, Watanabe H, Goi M, Tanaka M (2002) Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (LED) irradiation source. Acta Horticult 575:117–124

    Google Scholar 

  • Folta KM, Koss LL, McMorrow R, Kim H-H, Kenitz JD, Wheeler R, Sager JC (2005) Design and fabrication of adjustable red-green-blue LED light arrays for plant research. BMC Plant Biol. 5:17. doi: 10.1186/1471-2229-5-17

  • Goins GD, Yorio NC, Sanwo MM, Brown CS (1997) Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Heo JW, Lee CW, Murthy HN, Paek KY (2003) Influence of light quality and photoperiod on flowering of Cyclamen persicum Mill. cv. ‘Dixie White’. Plant Growth Regul 40:7–10. doi:10.1023/a:1023096909497

    Article  CAS  Google Scholar 

  • Heydarizadeh P, Zahedi M, Sabzalian MR, Ataii E (2013) Mycorrhizal infection, essential oil content and morpho-phenological characteristics variability in three mint species. Sci Hortic 153:136–142. doi:10.1016/j.scienta.2013.01.014

    Article  CAS  Google Scholar 

  • Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S (2006) Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng 102:442–446. doi:10.1263/jbb.102.442

    Article  PubMed  CAS  Google Scholar 

  • Kurilcik A, Miklusyte-Canova R, Dapkuniene S, Zilinskaite S, Kurilcik G, Tamulaitis G, Duchovskisand P, Zukauskas A (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 2:161–167. doi:10.2478/s11535-008-0006-9

    Article  Google Scholar 

  • Lian M-L, Murthy HN, Paek K-Y (2002) Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Sci Hortic 94:365–370. doi:10.1016/S0304-4238(01)00385-5

    Article  Google Scholar 

  • Lin C (2000) Plant blue-light receptors. Trends Plant Sci 5:337–342

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. PNAS 101:9897–9902. doi:10.1073/pnas.0400935101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martineau V, Lefsrud M, Tahera Nazanin M, Kopsell DA (2012) Comparison of light-emitting diode and high-pressure sodium light treatments for hydroponics growth of Boston lettuce. Hortscience 47:477–482

    CAS  Google Scholar 

  • Nhut DT, Takamura NT, Watanabe H, Tanaka M (2000) Light emitting diodes (LEDs) as a radiation source for micropropagation of strawberry. In: Kubota C, Chun C (eds.), Transplant production in the 21st century, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 114–118

  • Okamoto K, Yanagi T, Kondo S (1997) Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light. Acta Horticult 435:149–157

    Google Scholar 

  • Poudel PR, Kataoka I, Mochioka R (2008) Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult 92:147–153. doi:10.1007/s11240-007-9317-1

    Article  Google Scholar 

  • Roh MS, Lawson RH (1996) Requirements for new floral crops-perspectives for the United States of America. Acta Horticult 454:29–38

    Google Scholar 

  • Runkle ES, Heins RD (2001) Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hortic Sci 126:275–282

    Google Scholar 

  • SAS Institute, Inc (1999) SAS/STAT User’s Guide. SAS Institute, Inc, Cary

    Google Scholar 

  • Schaer JA, Mandoli DF, Briggs WR (1983) Phytochrome-mediated cellular photomorphogenesis. Plant Physiol 72:706–712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schoefs B (2002) Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci Technol 13:361–371. doi:10.1016/S0924- 2244(02)00182-6

    Article  CAS  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247. doi:10.1146/annurev.arplant.57.032905.105434

    Article  PubMed  CAS  Google Scholar 

  • Singh AK (2006) Flower crops: cultivation and management. New India Publishing Agency, Pitampuram

    Google Scholar 

  • Tamulaitis G, Duchovskis P, Bliznikas Z, Breive K, Ulinskaite R, Brazaityte A, Novickovas A, Zukauskas A (2005) High-power light-emitting diode based facility for plant cultivation. J Phys D Appl Phys 38:3182–3187. doi:10.1088/0022-3727/38/17/S20

    Article  CAS  Google Scholar 

  • Wang C-Y, Fub C-C, Liu Y-C (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem Eng J 37:21–25. doi:10.1016/j.bej.2007.03.004

    Article  Google Scholar 

  • Wu M-C, Hou C-Y, Jiang C-M, Wang Y-T, Wang C-Y, Chen H-H, Chang H-M (2007) Novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753–1758. doi:10.1016/j.foodchem.2006.02.010

    Article  CAS  Google Scholar 

  • Yam FK, Hassan Z (2005) Innovative advances in LED technology. Microelectron J 36:129–137. doi:10.1016/j.mejo.2004.11.008

    Article  CAS  Google Scholar 

  • Yamaoka Y, Carmona ML, Oota S (2004) Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under super-bright red and blue light-emitting diodes. Biosci Biotechnol Biochem 68:1594–1597

    Article  PubMed  CAS  Google Scholar 

  • Yanagi T, Okamoto K (1997) Utilization of super-bright light emitting diodes as an artificial light source for plant growth. Acta Horticult 418:223–228

    Google Scholar 

  • Yeh N, Chung J-P (2009) High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energ Rev 13:2175–2180. doi:10.1016/j.mejo.2004.11.008

    Article  CAS  Google Scholar 

  • Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC (2001) Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. Hortscience 36:380–383

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The corresponding author would like to thank the Iranian National Elites Foundation and Isfahan University of Technology for the financial support of this research. BS also thanks the University of Le Mans for support. We would also like to express our appreciation to Mr. Ehsan Ataii for the assistance in conducting experiments and Prof. Aghafakhr Mirlohi for the critical review of the preliminary draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Sabzalian.

About this article

Cite this article

Sabzalian, M.R., Heydarizadeh, P., Zahedi, M. et al. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agron. Sustain. Dev. 34, 879–886 (2014). https://doi.org/10.1007/s13593-014-0209-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0209-6

Keywords

Navigation