Skip to main content
Log in

Increasing the Ratio of Blue to Red Light Improves Growth and Phytochemical Content in Hydrocotyle bonariensis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Artificial light has proved useful for optimal and consistent production of high-quality plants and plant produce. Among artificial light sources, light-emitting diodes (LED) offer advantages for indoor cultivation including narrow and customisable light spectra, lower heat production and higher energy efficiency. With the aim to improve both productivity and nutritional quality of Hydrocotyl bonariensis Lam. (largeleaf pennywort), phenotypical and phytochemical responses were assayed for plants grown under natural light and under four different spectral compositions of LED lighting: (1) red and blue (R : B = 83 : 35), (2) red and blue with a higher blue irradiance (R : B = 83 : 65), (3) red, blue and green (R : B : G = 83 : 35 : 12), and (4) red, blue and ultraviolet A (R : B : U = 83 : 35 : 10). Results show that the ratio of red to blue light has a substantial influence on plant growth and leaf biomass in H. bonariensis. Plants grown under the system with a higher level of blue irradiance showed the highest leaf number, total leaf area, leaf biomass, plant height, total antioxidant content, total phenol and total flavonoid content compared to plants grown under natural light in a greenhouse or the other LED conditions. The addition of green LED had a neutral effect on plant growth and on total antioxidant, phenol and flavonoid content while the addition of ultraviolet A LED had a negative effect on plant growth and on total antioxidant and phenol content. These findings provide fundamental information for the design of light sources, which will be useful for sustainable indoor cultivation of H. bonariensis and other pennywort species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ahmed, H.A., Tong, Y.-X., and Yang, Q.-C., Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: a review, S. Afr. J. Bot., 2020, vol. 130, p. 75.

    Article  CAS  Google Scholar 

  2. Kong, S.G. and Okajima, K., Diverse photoreceptors and light responses in plants, J. Plant Res., 2016, vol. 129, p. 111.

    Article  Google Scholar 

  3. Piovene, C., Orsini, F., Bosi, S., Sanoubar, R., Bregola, V., Dinelli, G., and Gianquinto, G., Optimal red: blue ratio in LED lighting for nutraceutical indoor horticulture, Sci. Hortic. (Amsterdam), 2015, vol. 193, p. 202.

    Article  Google Scholar 

  4. Choi, H.G., Moon, B.Y., and Kang, N.J., Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber, Sci. Hortic. (Amsterdam), 2015, vol. 189, p. 22.

    Article  Google Scholar 

  5. Sabzalian, M.R., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M., Sahba, M.R., and Schoefs, B., High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production, Agron. Sustainable Dev., 2014. vol. 34, p. 879.

    Article  Google Scholar 

  6. Manivannan, A., Soundararajan, P., Halimah, N., Ko, C.H., and Jeong, B.R., Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro, Hortic. Environ. Biotechnol., 2015, vol. 56, p. 105.

    Article  CAS  Google Scholar 

  7. Mustaffa, F., Indurkar, J., Ali, N.I.M., Hanapi, A., Shah, M., Ismail, S., and Mansor, S.M., A review of Malaysian medicinal plants with potential antidiabetic activity, J. Pharm. Res., 2011, vol. 4, p. 4217.

    Google Scholar 

  8. Ajani, E.O., Sabiu, S., Zakari, M., Olanipekun, B.E., Akintunde, J.K., and Bamisaye, FA., Antioxidant capacity of fractionated extract and structural elucidation of isolated compounds from leaf extract of Hydrocotyl bonariensis Comm. Exlam., J. Biol. Active Prod. Nat., 2017, vol. 7, p. 166.

    CAS  Google Scholar 

  9. Tabopda, T.K., Mitaine-Offer, A.C., Miyamoto, T., Tanaka, C., Mirjolet, J.F., Duchamp, O., Ngadjui, B.T., and Lacaille-Dubois, M.A., Triterpenoid saponins from Hydrocotyle bonariensis Lam., Phytochemistry, 2012, vol. 73, p. 142.

    Article  CAS  Google Scholar 

  10. Maulidiani, H., Abas, F., Khatib, A., Shaari, K., and Lajis, N.H., Chemical characterization and antioxidant activity of three medicinal Apiaceae species, Indus Crop Prod., 2014, vol. 55, p. 238.

    Article  CAS  Google Scholar 

  11. Ouviña, A., Gorzalczany, S., Acevedo, C., and Ferraro, G., Actividad antiinflamatoria tópica de extractos de Hydrocotyle bonariensis Lam. (Apiaceae), Lat. Am. J. Pharm., 2009, vol. 28, p. 941.

    Google Scholar 

  12. Raimondo, D., von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi, D.A., and Manyama, P.A., Red List of South African Plants, Strelitzia: S. Afr. Natl. Biodiversity Inst., 2009.

  13. Masoumian, M., Arbakariya, A., Syahida, A., and Maziah, M., Flavonoids production in Hydrocotyle bonariensis callus tissues, J. Med. Plant Res., 2011, vol. 5, p. 1564.

    CAS  Google Scholar 

  14. Sumanta, N., Haque, C.I., Nishika, J., and Suprakash, R., Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents, Res. J. Chem. Sci., 2014, vol. 4, p. 63.

    Google Scholar 

  15. Singleton, V.L., Orthofer, R., and Lamuela-Raventós, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, Method Enzymol., 1999, vol. 299, p. 152.

    Article  CAS  Google Scholar 

  16. Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., and Li, T., Effects of growth under different light spectra on the subsequent high light tolerance in rose plants, AoB Plants, 2018, vol. 10, p. 52.

    Article  Google Scholar 

  17. Hiyama, A., Takemiya, A., Munemasa, S., Okuma, E., Sugiyama, N., Tada, Y., Murata, Y., and Shimazaki, K.I., Blue light and CO2 signals converge to regulate light-induced stomatal opening, Nat. Commun., 2017, vol. 8, p. 1.

    Article  CAS  Google Scholar 

  18. Wojciechowska, R., Długosz-Grochowska, O., Kołton, A., and Żupnik, M., Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles, Sci. Hortic. (Amsterdam), 2015, vol. 187, p. 80.

    Article  Google Scholar 

  19. Liu, H., Fu, Y., and Wang, M., Green light enhances growth, photosynthetic pigments and CO2 assimilation efficiency of lettuce as revealed by “knock out” of the 480–560 nm spectral waveband, Photosynthetica, 2017, vol. 55, p. 144.

    Article  CAS  Google Scholar 

  20. Hunyadi, A., The mechanism(s) of action of antioxidants: from scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites, Med. Res. Rev., 2019, vol. 39, p. 2505.

    Article  CAS  Google Scholar 

  21. Kim, H.H., Goins, G.D., Wheeler, R.M., and Sager, J.C., Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes, HortScience, 2004, vol. 39, p. 1617.

    Article  Google Scholar 

  22. Son, K.H. and Oh, M.M., Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes, HortScience, 2013, vol. 48, p. 988.

    Article  Google Scholar 

  23. Chen, Y., Li, T., Yang, Q., Zhang, Y., Zou, J., Bian, Z., and Wen, X., UVA radiation is beneficial for yield and quality of indoor cultivated lettuce, Front. Plant Sci., 2019, vol. 10, p. 1563.

    Article  Google Scholar 

  24. Wargent, J.J., Moore, J.P., Ennos, R.A., and Paul, N.D., Ultraviolet radiation as a limiting factor in leaf expansion and development, Photochem. Photobiol., 2009, vol. 85, p. 279.

    Article  CAS  Google Scholar 

  25. Qian, M., Rosenqvist, E., Flygare, A.M., Kalbina, I., Teng, Y., Jansen, M.A., and Strid, Å., UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield, Sci. Hortic. (Amsterdam), 2020, vol. 263, p. 109110.

    Article  CAS  Google Scholar 

  26. Neugart, S. and Schreiner, M., UVB and UVA as eustressors in horticultural and agricultural crops, Sci. Hortic. (Amsterdam), 2018, vol. 234, p. 370.

    Article  CAS  Google Scholar 

  27. Garg, N. and Manchanda, G., ROS generation in plants: Boon or bane? Plant Biosyst., 2009, vol. 143, p. 1.

    Article  Google Scholar 

Download references

Funding

This work was supported by the CEBAR Research University grants (project no. RU004-2019) and MOHE-Top 100 grant (project no. TU002G-2018).

Author information

Authors and Affiliations

Authors

Contributions

JAH: Conceptualization, Supervision, Writing, Reviewing and Editing, Funding acquisition. IN, PM, PS: Investigation, Formal analysis. NR: Methodology (designed and constructed the LED system). PM: Project Administration, Formal analysis, Writing, Original Draft. All authors read and approved the manuscript.

Corresponding author

Correspondence to J. A. Harikrishna.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, I., Mazumdar, P., Singh, P. et al. Increasing the Ratio of Blue to Red Light Improves Growth and Phytochemical Content in Hydrocotyle bonariensis . Russ J Plant Physiol 68, 337–346 (2021). https://doi.org/10.1134/S1021443721020126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721020126

Keywords:

Navigation