Alaux, C., Folschweiller, M., McDonnell, C., Beslay, D., Cousin, M., Dussaubat, C., Brunet, J.-L., Le Conte, Y. (2011) Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). J. Inverteb. Pathol. 106, 380–385
Article
Google Scholar
Alaux, C., Allier, F., Decourtye, A., Odoux, J.F., Tamic, T., Chabirand, M., Delestra, E., Decugis, F., Le Conte, Y., Henry, M. (2017) A “landscape physiology” approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Sci. Rep. 7, 40568
Al-Ghamdi, A., Al-Khaibari, A., Omar, M. (2011) Consumption rate of some proteinic diets affecting hypopharyngeal gland development in honeybee workers. Saudi J. Biol. Sci. 18, 73–77
CAS
Article
PubMed
Google Scholar
Bourgeois, L., Rinderer, T.E., Beaman, L.D., Danka, R.G. (2010) Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. J. Invertebr. Pathol. 103, 53–58.
CAS
Article
PubMed
Google Scholar
Brodschneider, R., Crailsheim, K. (2010) Nutrition and health in honey bees. Apidologie 41, 278–294.
Article
Google Scholar
Chen, Y.W., Chung, W.P., Chung-Hsiung, W., Solter, L.F., Huang, W.F. (2012) Nosema ceranae infection intensity highly correlates with temperature. J. Invertebr. Pathol. 111, 264–267
Article
PubMed
Google Scholar
Decourtye, A., Mader, E., Desneux, N. (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41, 264
Article
Google Scholar
DeGrandi-Hoffman, G., Wardell, G., Ahumada-Secura, F., Rinderer, T., Danka, R., Pettis, J. (2008) Comparisons of pollen substitute diets for honeybees: consumption rates by colonies and effects on brood and adult populations. J. Apic. Res. 47, 265–270
Article
Google Scholar
DeGrandi-Hoffman, G., Chen, Y., Huang, E., Huang, M. (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 56, 1194–1191
Article
CAS
Google Scholar
DeGrandi-Hoffman, G, Chen, Y., Rivera, R., Carroll, M., Chambers, M., Hidalgo, G., Watkins de Jong, E. (2016) Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie 47, 186–196
CAS
Article
Google Scholar
Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L.P., Decourtye, A., Kretzschmar, A., Suchail, S., Brunet, J.L., Alaux, C. (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLOS One 8, e72016
Article
CAS
PubMed
PubMed Central
Google Scholar
Döke, M. A., Frazier, M., Grozinger, C. M. (2015) Overwintering honey bees: biology and management. Curr. Opin. Insect Sci. 10, 185–193
Article
PubMed
Google Scholar
Dolezal, A., Carrillo-Tripp, J., Miller, W., Bonning, B., Toth, A. (2016) Intensively cultivated landscape and Varroa mite infestation are associated with reduced honey bee nutritional state. PLOS One 11, e0153531
Article
CAS
PubMed
PubMed Central
Google Scholar
Eiri, D., Suwannapong, G., Endler, M., Nieh, J. (2015) Nosema ceranae can infect honey bee larvae and reduces subsequent adult longevity. PLOS One 10, e0126330
Article
CAS
PubMed
PubMed Central
Google Scholar
Engel, P., Kwong, W.K., Moran, N.A. (2013) Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int. J. Syst. Evol. Microbiol. 63, 3646–3651
CAS
Article
PubMed
Google Scholar
Fluri, P. Lüscher, M., Wille, H., Gerig, L. (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28, 61–68
CAS
Article
Google Scholar
Harrison, J.M. (1987) Roles of individual honeybee workers and drones in colonial thermogenesis. J. Exp. Biol. 129, 53–61
CAS
PubMed
Google Scholar
Higes, M., Martin-Hernandez, R., Botias, C., Bailon, E.G., Gonzalez-Porto, A.V., Barrios, L., Del Nozal, M.J., Bernal, J.L., Jimenez, J.J., Palencia, P.G., Meana, A. (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10, 2659–2669
Article
PubMed
Google Scholar
Hrassnigg, N., Crailsheim, K. (1998) Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J. Insect Physiol. 44, 929–939
CAS
Article
PubMed
Google Scholar
Jack, C., Uppala, S., Lucas, H., Sagili, R. (2016) Effects of pollen dilution on infection of Nosema ceranae in honey bees. J. Insect Physiol. 87, 12–19
CAS
Article
PubMed
Google Scholar
Keeling, C.I., Slessor, K.N., Higo, H.A., Winston, M.A. (2003) New components of the honey bee (Apis mellifera L.) queen retinue pheromone. P. Natl. Acad. Sci. USA 100, 4486–4491
CAS
Article
Google Scholar
Khoury, D.S., Barron, A.B., Myerscough, M.R. (2013) Modeling food and population dynamics in honey bee colonies. PLOS One 8, e59084
CAS
Article
PubMed
PubMed Central
Google Scholar
Kocher, S., Grozinger, C. (2011) Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275
CAS
Article
PubMed
Google Scholar
Kostarelou-Damianidou, M., Thrasyvoulou, A., Tselios, D., Bladenopoulos, B. (1995) Brood and honey production of honey bee colonies requeened at various frequencies. J. Apicult. Res. 34, 9–14
Article
Google Scholar
Kralj, J., Fuchs, S. (2010) Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers. Apidologie 41, 21–28
Article
Google Scholar
Kronenberg, F., Heller, H.C. (1982) Colonial thermoregulation in honey bees (Apis mellifera). J. Comp. Physiol. 148, 65–76
Article
Google Scholar
Lundin, O., Ward, K., Artz, D. Boyle, N. Pitts-Singer, T., Williams, N. (2017) Wildflower plantings do not compete with neighboring almond orchards for pollinator visits. Environ. Entom. 46, 559–564
Article
Google Scholar
Mattila, H.R., Otis, G.W. (2006) Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. Econ. Entomol. 99, 604–613
CAS
Article
Google Scholar
Mattila, H.R., Otis, G.W. (2007) Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol. Entomol. 32, 496–505
Article
Google Scholar
Mayack, C., Naug, D. (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J. Invertebr. Pathol. 100, 185–188
Article
PubMed
Google Scholar
Meikle W., Weiss M., Stilwell A. (2016) Monitoring colony phenology using within-day variability in continuous weight and temperature of honey bee hives. Apidologie 47, 1–14
Article
Google Scholar
Münch, D., Kreilbich, C.D., Amdam, G.V. (2013) Aging and its modulation in a long-lived worker caste of the honey bee. J. Exp. Biol. 216, 1638–1649
Article
PubMed
PubMed Central
Google Scholar
Naug, D., Gibbs, A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40, 595–599
Article
Google Scholar
Naumann K., Winston M., Slessor K., Prestwich G., Webster F. (1991) Production and transmission of honey bee (Apis melifera L.) mandibular gland pheromone. Beh. Ecol. Sociobiol. 29, 321–332
Article
Google Scholar
Pankiw, T., Huang, Z, Winston, M. L., Robinson, G. E. (1998) Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. Insect Physiol. 44, 685–692
Article
Google Scholar
Perry, C.J., Sovik, E., Myerscough, M.R., Barron, A.B. (2015) Rapid behavioral maturation accelerates failure of stressed honey bee colonies. PNAS 112, 3427–3432
CAS
Article
PubMed
Google Scholar
Pettis, J.S., Winston, M.L., Collins, A.M., (1995) Suppression of queen rearing in European and africanized honey bees (Apis melifera L.) by synthetic queen mandibular gland pheromone. Insect. Soc. 42, 113–121
Article
Google Scholar
Pettis, J.S., Higo, H.A., Pankiw, T., Winston, M.L. (1997) Queen rearing suppression in the honey bee - evidence for a fecundity signal. Insect. Soc. 44, 311–322
Article
Google Scholar
Requier, F., Odoux, J.-F., Tamic, T., Moreau, N., Henry, M., Decourtye, A., Bretagnolle, V. (2015) Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890
Article
PubMed
Google Scholar
Ricigliano, V., Mott, B., Floyd, A., Copeland, D., Carroll, M., Anderson, K. (2018) Honey bees overwintering in a southern climate: longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci. Rep.-UK 8, 10475
Article
CAS
Google Scholar
Rollin, O., Bretagnolle, V., Decourtye, A., Aptel, J., Michel, N., Vaissière B, Henry, M. (2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agr. Ecosyst. Environ. 179, 78–89
Article
Google Scholar
Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E., McFrederick, Q. S. (2018) Longitudinal effects of supplemental forage on the honey bee (Apis mellifera) microbiota and inter- and intra- colony variability. Microb. Ecol. https://doi-org.ezproxy1.library.arizona.edu/10.1007/s00248-018-1151-y
SAS 9.4 (2016) SAS Institute, Cary, North Carolina, USA
Seeley, T.D. (1979) Queen substance dispersal by messenger workers in honeybee colonies. Behav. Ecol. Sociobiol. 5, 391–415
Article
Google Scholar
Seitz, N., Traynor, K.S., Steinhauer, N., Rennich, K., Wilson, M.E., Ellis, J.D, Rose, R., Tarpy, D.R., Sagili, R. R., Caron, D.M., Delaplane, K.S., Rangel, J., Lee, K., Baylis, K., Wilkes, J.T., Skinner, J.A., Pettis, J.S., D. vanEngelsdorp, (2015) A national survey of managed honey bee 2014-2015 annual colony losses in the USA. J. Apicult. Res. 54, 292–304
Article
Google Scholar
Simone-Finstrom, M., Li-Byarlay, H., Huang, M.H., Strand, M.K., Rueppell, O., Tarpy, D.R. (2016) Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci. Rep. UK 6, 32023
CAS
Article
Google Scholar
Slessor, K.N., Kaminski, L.A., King, G.G., Borden, J.H., Winston, M.L. (1988) Semiochemical basis of the retinue response to queen honey bees. Nature 332, 354–356
CAS
Article
Google Scholar
Slessor, K.N., Kaminski, L.A., King, G., Winston, M.L. (1990) Semiochemicals of the honeybee queen mandibular glands. J. Chem. Ecol. 16, 851–860
CAS
Article
PubMed
Google Scholar
Smart, M., Pettis, J., Rice, N., Browning, Z., Spivak, M. (2016) Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLOS One 11, e0152685
Article
CAS
PubMed
PubMed Central
Google Scholar
Standifer, L.N., Haydak, M.H., Mills, J.P., Levin, M.D. (1973) Influence of pollen in artificial diets on food consumption and brood production in honey bee colonies. Am. Bee J. 113, 94–95
Google Scholar
Wang, Q., Xu, X., Zhu, X., Chen, L., Zhou, S., Huang, Z. Y., Zhou, B. (2016) Low-temperature stress during capped brood stage increases pupal mortality, misorientation, and adult mortality in honey bees. PLOS One 11, e0154547
Article
CAS
PubMed
PubMed Central
Google Scholar