Density-dependent negative responses by bumblebees to bacteria isolated from flowers

Abstract

Flowers offer habitats for bacterial communities that are often characterized by low diversities but high densities. The composition of these communities and the dissemination of bacteria between flowers receive increasing attention, whereas the ecological functions of flower-associated but non-phytopathogenic bacteria remain understudied. We screened bacteria isolated from nectar, petals and leaves of two plant species for their potential to affect flower–visitor interactions. We took advantage of the proboscis extension reflex (PER) of bumblebees evoked by sugar and investigated whether bacteria associated with the reward may interrupt this reflex. Cultivated bacteria were transferred into a watery glucose solution in increasing densities and their effect on the proportion of bumblebees displaying the PER after antennal contact with glucose solutions and bacteria was scored. In all but one trial, the proportion of bumblebees that accepted the watery glucose solution was negatively correlated with the bacterial density. Nearly half of the bacteria tested evoked avoidance at naturally occurring densities. Our results suggest that bacteria colonizing flowers have the potential to negatively affect the reproduction of plants via reduced visits by pollinators.

This is a preview of subscription content, log in to check access.

Figure 1.
Figure 2.

References

  1. Adler, L.S. (2000) The ecological significance of toxic nectar. Oikos 91, 409–420

    Article  Google Scholar 

  2. Alvarez-Perez, S., Herrera, C.M. (2013) Composition, richness and nonrandom assembly of culturable bacterial-microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol. Ecol. 83, 685–699

    CAS  PubMed  Article  Google Scholar 

  3. Alvarez-Perez, S., Herrera, C.M., de Vega, C. (2012) Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiol. Ecol. 80, 591–602

    CAS  PubMed  Article  Google Scholar 

  4. Anfora, G., Rigosi, E., Frasnelli, E., Ruga, V., Trona, F., Vallortigara, G. (2011) Lateralization in the invertebrate brain: left-right asymmetry of olfaction in bumble bee, Bombus terrestris. Plos One 6, e18903

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Belisle, M., Peay, K.G., Fukami, T. (2012) Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microb. Ecol. 63, 711–718

    PubMed  Article  Google Scholar 

  6. Brysch-Herzberg, M. (2004) Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiol. Ecol. 50, 87–100

    CAS  PubMed  Article  Google Scholar 

  7. Buban, T., Orosz-Kovacs, Z., Farkas, A. (2003) The nectary as the primary site of infection by Erwinia amylovora (Burr.). Plant Syst. Evol. 238, 183–194

    Google Scholar 

  8. Carter, C., Thornburg, R.W. (2004) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci. 9, 320–324

    CAS  PubMed  Article  Google Scholar 

  9. Crawley M. J. (2005) Statistics - An introduction using R. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.

  10. Davis, T.S., Crippen, T.L., Hofstetter, R.W., Tomberlin, J.K. (2013) Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840–859

    CAS  PubMed  Article  Google Scholar 

  11. Ercolani, G.L. (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb. Ecol. 21, 35–48

    CAS  PubMed  Article  Google Scholar 

  12. Evangelista, C., Kraft, P., Dacke, M., Reinhard, J., Srinivasan, M.V. (2010) The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera. J. Exp. Biol. 213, 262–270

    CAS  PubMed  Article  Google Scholar 

  13. Ezenwa, V.O., Gerardo, N.M., Inouye, D.W., Medina, M., Xavier, J.B. (2012) Animal behavior and the microbiome. Science 338, 198–199

    CAS  PubMed  Article  Google Scholar 

  14. Fouks, B., Lattorff, H.M.G. (2011) Recognition and avoidance of contaminated flowers by foraging bumblebees (Bombus terrestris). Plos One 6, e26328

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Fridman, S., Izhaki, I., Gerchman, Y., Halpern, M. (2012) Bacterial communities in floral nectar. Environ. Microbiol. Rep. 4, 97–104

    PubMed  Article  Google Scholar 

  16. Fuernkranz, M., Lukesch, B., Müller, H., Huss, H., Grube, M., Berg, G. (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb. Ecol. 63, 418–428

    CAS  Article  Google Scholar 

  17. Haupt, S.S. (2004) Antennal sucrose perception in the honey bee (Apis mellifera L.): behaviour and electrophysiology. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190, 735–745

    CAS  PubMed  Article  Google Scholar 

  18. Herrera, C.M., Garcia, I.M., Perez, R. (2008) Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 89, 2369–2376

    PubMed  Article  Google Scholar 

  19. Herrera, C.M., Pozo, M.I., Medrano, M. (2013) Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology 94, 273–279

    PubMed  Article  Google Scholar 

  20. Huang, M., Sanchez-Moreiras, A.M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., Tholl, D. (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-b-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 193, 997–1008

    CAS  PubMed  Article  Google Scholar 

  21. Jensen, G.B., Hansen, B.M., Eilenberg, J., Mahillon, J. (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5, 631–640

    CAS  PubMed  Article  Google Scholar 

  22. Johnson, K.B., Stockwell, V.O., Mclaughlin, R.J., Sugar, D., Loper, J.E., Roberts, R.G. (1993) Effect of Antagonistic Bacteria on Establishment of Honey Bee-Dispersed Erwinia-Amylovora in Pear Blossoms and on Fire Blight Control. Phytopathology 83, 995–1002

    Article  Google Scholar 

  23. Junker, R.R., Tholl, D. (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825

    CAS  PubMed  Article  Google Scholar 

  24. Junker, R.R., Loewel, C., Gross, R., Dötterl, S., Keller, A., Blüthgen, N. (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 13, 918–924

    CAS  PubMed  Article  Google Scholar 

  25. Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., Piechulla, B. (2009) Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81, 1001–1012

    CAS  PubMed  Article  Google Scholar 

  26. Knuth, P. (1908) Handbook of flower pollination. Clarendon, Oxford

    Google Scholar 

  27. Krimm, U., Abanda-Nkpwatt, D., Schwab, W., Schreiber, L. (2005) Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiol. Ecol. 53, 483–492

    CAS  PubMed  Article  Google Scholar 

  28. Lachance, M.A., Starmer, W.T., Rosa, C.A., Bowles, J.M., Barker, J.S.F., Janzen, D.H. (2001) Biogeography of the yeasts of ephemeral flowers and their insects. Fems Yeast Res. 1, 1–8

    CAS  PubMed  Article  Google Scholar 

  29. Leroy P. D., Sabri A., Heuskin S., Thonart P., Lognay G., Verheggen F. J., Francis F., Brostaux Y., Felton G. W., Haubruge E. (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2, doi:10.1038/ncomms1347

  30. Lindow, S.E., Brandl, M.T. (2003) Microbiology of the phyllosphere. Appl. Environ. Microb. 69, 1875–1883

    CAS  Article  Google Scholar 

  31. Lunau, K., Unseld, K., Wolter, F. (2009) Visual detection of diminutive floral guides in the bumblebee Bombus terrestris and in the honeybee Apis mellifera. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195, 1121–1130

    PubMed  Article  Google Scholar 

  32. Maccagnani, B., Giacomello, F., Fanti, M., Gobbin, D., Maini, S., Angeli, G. (2009) Apis mellifera and Osmia cornuta as carriers for the secondary spread of Bacillus subtilis on apple flowers. Biocontrol 54, 123–133

    Article  Google Scholar 

  33. Mattila, H.R., Rios, D., Walker-Sperling, V.E., Roeselers, G., Newton, I.L.G. (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. Plos One 7

  34. Ondov B. D., Bergman N. H., Phillippy A. M. (2011) Interactive metagenomic visualization in a Web browser. Bmc Bioinforma. 12, doi:10.1186/1471-2105-1112-1385

  35. Ponnusamy, L., Xu, N., Nojima, S., Wesson, D.M., Schal, C., Apperson, C.S. (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A. 105, 9262–9267

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Pozo, M.I., Lachance, M.A., Herrera, C.M. (2012) Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol. Ecol. 80, 281–293

    CAS  PubMed  Article  Google Scholar 

  37. R Development Core Team (2011) R: A language and environment for statistical computing. ed.^eds.), p.^pp. R Foundation for Statistical Computing, Vienna.

  38. Sanchez, M.G.D. (2011) Taste Perception in Honey Bees. Chem. Senses 36, 675–692

    Article  Google Scholar 

  39. Schulz, S., Dickschat, J. (2007) Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24, 814–842

    CAS  PubMed  Article  Google Scholar 

  40. Shade, A., McManus, P.S., Handelsman, J. (2013) Unexpected diversity during community succession in the apple flower microbiome. mBio 4, e00602–e00612

    PubMed Central  PubMed  Article  Google Scholar 

  41. Stensmyr, M.C., Dweck, H.K.M., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz, J., Grabe, V., Steck, K., Lavista-Llanos, S., Wicher, D., Sachse, S., Knaden, M., Becher, P.G., Seki, Y., Hansson, B.S. (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151, 1345–1357

    CAS  PubMed  Article  Google Scholar 

  42. van der Steen, J.J.M., Langerak, C.J., van Tongeren, C.A.M., Dik, A.J. (2004) Aspects of the use of honeybees and bumblebees as vector of antagonistic micro-organisms in plant disease control. Proc. Neth. Entomol. Soc. 15, 41–46

    Google Scholar 

  43. Vannette, R.L., Gauthier, M.-P.L., Fukami, T. (2012) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc. R. Soc. B 280, 20122601

    PubMed  Article  Google Scholar 

  44. Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Yang, C.-H., Crowley, D.E., Borneman, J., Keen, N.T. (2001) Microbial phyllosphere populations are more complex than previously realized. Proc. Natl. Acad. Sci. U. S. A. 98, 3889–3894

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Christina Loewel for helpful advices and Karl Köhrer for technical support. The project was supported by the Deutsche Forschungsgemeinschaft (DFG, JU 2856/1-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert R. Junker.

Additional information

Réponses négatives densité-dépendantes des bourdons aux bactéries isolées à partir des fleurs

Aversion / bactérie / Bombus terrestris / interactions plante–bactérie–animal / PER / réflexe d’extension du proboscis

Hummeln vermeiden Bakterien auf Blüten in natürlichen Dichten

Abneigung / Bacilli / Bombus terrestris / Pflanzen–Bakterien–Tier Interaktionen / Rüsselreflex

Manuscript editor: Bernd Grünewald

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Junker, R.R., Romeike, T., Keller, A. et al. Density-dependent negative responses by bumblebees to bacteria isolated from flowers. Apidologie 45, 467–477 (2014). https://doi.org/10.1007/s13592-013-0262-1

Download citation

Keywords

  • aversion
  • Bacilli
  • Bombus terrestris
  • plant–bacteria–animal interactions
  • proboscis extension reflex