Skip to main content
Log in

Stable reference genes for the measurement of transcript abundance during larval caste development in the honeybee

  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Many genes are differentially regulated by caste development in the honeybee. Identifying and understanding these differences is key to discovering the mechanisms underlying this process. To identify these gene expression differences requires robust methods to measure transcript abundance. RT-qPCR is currently the gold standard to measure gene expression, but requires stable reference genes to compare gene expression changes. Such reference genes have not been established for honeybee caste development. Here, we identify and test potential reference genes that have stable expression throughout larval development between the two female castes. In this study, 15 candidate reference genes were examined to identify the most stable reference genes. Three algorithms (GeNorm, Bestkeeper and NormFinder) were used to rank the candidate reference genes based on their stability between the castes throughout larval development. Of these genes Ndufa8 (the orthologue of a component of complex one of the mitochondrial electron transport chain) and Pros54 (orthologous to a component of the 26S proteasome) were identified as being the most stable. When these two genes were used to normalise expression of two target genes (previously found to be differentially expressed between queen and worker larvae by microarray analysis) they were able to more accurately detect differential expression than two previously used reference genes (awd and RpL12). The identification of these novel reference genes will be of benefit to future studies of caste development in the honeybee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Andersen, C.L., Jensen, J.L., Orntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64(15), 5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Azevedo, S.V., Caranton, O.A.M., de Oliveira, T.L., Hartfelder, K. (2011) Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development. J. Insect Physiol. 57(1), 38–45

    Article  PubMed  CAS  Google Scholar 

  • Barchuk, A.R., Cristino, A.S., Kucharski, R., Costa, L.F., Simoes, Z.L., Maleszka, R. (2007) Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev. Biol. 7, 70

    Article  PubMed  Google Scholar 

  • Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55(4), 611–622

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Hu, Y., Zheng, H., Cao, L., Niu, D., Yu, D., Sun, Y., Hu, S., Hu, F. (2012) Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect. Biochem. Mol. Biol. 42(9), 665–673

    Article  PubMed  CAS  Google Scholar 

  • Corona, M., Estrada, E., Zurita, M. (1999) Differential expression of mitochondrial genes between queens and workers during caste determination in the honeybee Apis mellifera. J. Exp. Biol. 202(Pt 8), 929–938

    PubMed  CAS  Google Scholar 

  • de Azevedo, S.V., Hartfelder, K. (2008) The insulin signaling pathway in honey bee (Apis mellifera) caste development - differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J. Insect Physiol. 54(6), 1064–1071

    Article  PubMed  Google Scholar 

  • de Boer, M., de Boer, T., Marien, J., Timmermans, M., Nota, B., van Straalen, N., Ellers, J., Roelofs, D. (2009) Reference genes for QRT-PCR tested under various stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola). BMC Mol. Biol. 10(1), 54

    Article  PubMed  Google Scholar 

  • Evans, J.D., Wheeler, D.E. (1999) Differential gene expression between developing queens and workers in the honey bee. Apis mellifera. Proc. Natl. Acad. Sci. U S A 96(10), 5575–5580

    Article  CAS  Google Scholar 

  • Evans, J.D., Wheeler, D.E. (2001) Expression profiles during honeybee caste determination. Genome Biol. 2(1), RESEARCH0001

    PubMed  CAS  Google Scholar 

  • Glass, G.V., Peckham, P.D., Sanders, J.R. (1972) Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance. Rev. Educ. Res. 42(3), 237–288

    Article  Google Scholar 

  • Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., Vandesompele, J. (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8(2), R19

    Article  PubMed  Google Scholar 

  • Holzl, H., Kapelari, B., Kellermann, J., Seemuller, E., Sumegi, M., et al. (2000) The regulatory complex of Drosophila melanogaster 26S proteasomes: subunit composition and localization of a deubiquitylating enzyme. J. Cell Biol. 150(1), 119–129

    Article  PubMed  CAS  Google Scholar 

  • Humann, F.C., Hartfelder, K. (2011) Representational Difference Analysis (RDA) reveals differential expression of conserved as well as novel genes during caste-specific development of the honey bee (Apis mellifera L.) ovary. Insect Biochem. Mol. Biol. 41(8), 602–612

    Article  PubMed  CAS  Google Scholar 

  • Kucharski, R., Maleszka, J., Foret, S., Maleszka, R. (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319(5871), 1827–1830

    Article  PubMed  CAS  Google Scholar 

  • Lix, L.M., Keselman, J.C., Keselman, H.J. (1996) Consequences of Assumption Violations Revisited: a Quantitative Review of Alternatives to the One-Way Analysis of Variance F Test. Rev. Educ. Res. 66(4), 579–619

    Google Scholar 

  • Lourenco, A., Mackert, A., Cristino, A., Simões, Z. (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39(3), 372–385

    Article  CAS  Google Scholar 

  • Mutti, N.S., Wang, Y., Kaftanoglu, O., Amdam, G.V. (2011) Honey Bee PTEN Description, Developmental Knockdown, and Tissue-Specific Expression of Splice-Variants Correlated with Alternative Social Phenotypes. PLoS One 6(7), e22195

    Article  PubMed  CAS  Google Scholar 

  • Okoniewski, M., Miller, C. (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinforma. 7(1), 276

    Article  Google Scholar 

  • Patel, A., Fondrk, M.K., Kaftanoglu, O., Emore, C., Hunt, G., Frederick, K., Amdam, G.V. (2007) The Making of a Queen: TOR Pathway Is a Key Player in Diphenic Caste Development. PLoS One 2(6), e509

    Article  PubMed  Google Scholar 

  • Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9)

  • Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26(6), 509–515

    Article  PubMed  CAS  Google Scholar 

  • Rozen, S., Skaletsky, H., Misener, S., Krawetz, S.A. (1999) Primer3 on the WWW for General Users and for Biologist Programmers. In: Walker, J.M. (ed.) Bioinformatics Methods and Protocols, pp. 365–386. Humana Press, New York

    Chapter  Google Scholar 

  • Sardiello, M., Licciulli, F., Catalano, D., Attimonelli, M., Caggese, C. (2003) MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion. Nucleic Acids Res. 31(1), 322–324

    Article  PubMed  CAS  Google Scholar 

  • Scharlaken, B., de Graaf, D.C., Goossens, K., Brunain, M., Peelman, L.J., Jacobs, F.J. (2008) Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honeybee, Apis mellifera, after a bacterial challange. J. Insect Sci. 8, 33

    Article  Google Scholar 

  • Severson, D.W., Williamson, J.L., Aiken, J.M. (1989) Caste-Specific Transcription in the Female Honey Bee. Insect Biochem. 19(2), 215–220

    Article  Google Scholar 

  • Stabe, H. (1930) The rate of growth of worker, drone and queen larvae of the honeybee Apis mellifera Linn. J. Econ. Entomol. 23(2), 447–453

    Google Scholar 

  • Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., Nguyen, M. (2010) A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods. 50(4), S1–S5

    Google Scholar 

  • Valasek, M.A., Repa, J.J. (2005) The power of real-time PCR. Adv. Physiol. Educ. 29(3), 151–159

    Article  PubMed  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), RESEARCH0034

    Article  PubMed  Google Scholar 

  • Wang, G.-H., Xia, Q.-Y., Cheng, D.-J., Duan, J., Zhao, P., Chen, J., Zhu, L. (2008) Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR. Insect Sci. 15(5), 405–413

    Article  Google Scholar 

  • Wheeler, D.E., Buck, N., Evans, J.D. (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee. Apis mellifera. Insect Mol. Biol. 15(5), 597–602

    Article  CAS  Google Scholar 

  • Wolschin, F., Mutti, N.S., Amdam, G.V. (2011) Insulin receptor substrate influences female caste development in honeybees. Biol. Lett. 7(1), 112–115

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

RCC would like to thank Caroline Walker for advice and discussion that led to the development of this study. All authors would like to thank Frans Laas and Bettabees for help obtaining larval samples. This work was funded by the Royal Society of New Zealand Marsden Fund Grant (UOO0707) to P.K.D.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Dearden.

Additional information

Gènes de référence stables pour mesurer l’abondance de transcrits chez les larves d’abeilles durant le développement des castes

Développement/ caste/ développement larvaire/ expression génique/ PCR quantitative

Stabile Referenzgene für quantitative Transkriptbestimmungen in der Kastenentwicklung von Honigbienenlarven

quantitative RT-PCR/ Referenzgene/ Kastenentwicklung

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Expression of the 15 candidate genes in queens and workers throughout larval development. Raw Cq values are represented in box and whisker plots for queens and workers. The y-axis indicates the Cq values and the x-axis indicates the caste and time point sampled (Q = queens, W = workers). A two-way ANOVA and LSD post-hoc test were used to determine time points where queens and workers showed a significant difference in gene expression. P values < 0.05 are indicated by a single asterisk and P values < 0.01 by two asterisks. (DOC 19 kb)

Supplementary Figure 1b

(PDF 35.3 KB)

ESM 1

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, R.C., Duncan, E.J. & Dearden, P.K. Stable reference genes for the measurement of transcript abundance during larval caste development in the honeybee. Apidologie 44, 357–366 (2013). https://doi.org/10.1007/s13592-012-0187-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0187-0

Keywords

Navigation