Skip to main content
Log in

Genome-wide identification and characterization of a plant-specific Dof transcription factor gene family in olive (Olea europaea) and its comparison with Arabidopsis

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

DNA binding with one finger (Dof) proteins are encoded by a ubiquitous plant-specific transcription factor gene family that plays a critical role in various biological processes including fruit ripening and organogenesis. The wild olive (Olea europaea var. sylvestris v1.0) genome was used to identify Dof gene family members using a set of bioinformatics tools. Gene structure, chromosome locations, phylogeny, protein motifs, miRNA targets and tissue-specific expression patterns were analyzed. Here, we identified 51 potential Dof genes unevenly distributed on all chromosomes and a few scaffolds. Dof proteins in olive clustered into eight subgroups (D1, B2, C3, C2.2, C1, C2.1, B1, and A) based on the established Arabidopsis classification. The prevalence of segmental duplication was observed as compared to tandem duplication, and this was the main factor underlying the expansion of the Dof gene family in olive. Tissue-specific expression profiling of OeuDof genes revealed that the majority of OeuDof genes were highly expressed in flowers, stem and meristem tissues. In seed and meristem tissues, cis-regulatory element (CRE) analysis revealed the presence of elements that are specifically responsive to light, circadian, auxin, and ABA. In addition, a comparative analysis between Dof genes in olive and Arabidopsis revealed eight groups or sub-families, although the C3 group of Arabidopsis was not represented in olive. This extensive genome evaluation of the Dof gene family in olive presents a reference for cloning and functional analysis of the members of this gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:W39–W49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot 98:935–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beghe D, Piotti A, Satovic Z, de la Rosa R, Belaj A (2017) Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris. Ann Bot 119:671–679

    CAS  PubMed  Google Scholar 

  • Bettaieb I, Bouktila D (2020) Genome-wide analysis of NBS-encoding resistance genes in the Mediterranean olive tree (Olea europaea subsp. europaea var. europaea): insights into their molecular diversity, evolution and function. Tree Genet Genomes 16:1–21

    Google Scholar 

  • Bondarenko VS, Gelfand MS (2016) Evolution of the exon–intron structure in ciliate genomes. PLoS ONE 11:e0161476

    PubMed  PubMed Central  Google Scholar 

  • Bouarroudj K, Tamendjari A, Larbat R (2016) Quality, composition and antioxidant activity of Algerian wild olive (Olea europaea L. subsp. Oleaster) oil. Ind Crops Prod 83:484–491

    CAS  Google Scholar 

  • Breton C, Terral JF, Pinatel C, Medail F, Bonhomme F, Berville A (2009) The origins of the domestication of the olive tree. C R Biol 332:1059–1064

    PubMed  Google Scholar 

  • Bulow L, Hehl R (2016) Bioinformatic identification of conserved cis-sequences in coregulated genes. Methods Mol Biol 1482:233–245

    PubMed  Google Scholar 

  • Cai X, Zhang Y, Zhang C, Zhang T, Hu T, Ye J, Zhang J, Wang T, Li H, Ye Z (2013) Genome-wide analysis of plant-specific Dof transcription factor family in tomato. J Integr Plant Biol 55:552–566

    CAS  PubMed  Google Scholar 

  • Carbone F, Bruno L, Perrotta G, Bitonti MB, Muzzalupo I, Chiappetta A (2019) Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. PLoS ONE 14:e0221460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Ahmad M, Rim Y, Lucas WJ, Kim JY (2013) Evolutionary and molecular analysis of D of transcription factors identified a conserved motif for intercellular protein trafficking. New Phytol 198:1250–1260

    CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    CAS  PubMed  Google Scholar 

  • Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1:411–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo M (2016) Botanicals authentication in food, food supplements and herbal medicinal products. Plant Biosyst Int J Deal All Aspects Plant Biol 150:22–26

    Google Scholar 

  • Corrales AR, Nebauer SG, Carrillo L, Fernandez-Nohales P, Marques J, Renau-Morata B, Granell A, Pollmann S, Vicente-Carbajosa J, Molina RV, Medina J (2014) Characterization of tomato cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J Exp Bot 65:995–1012

    CAS  PubMed  Google Scholar 

  • Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M, Cano E, Galán B, Frias L, Ribeca P, Derdak S (2016) Genome sequence of the olive tree, Olea europaea. Gigascience 5:29

    PubMed  PubMed Central  Google Scholar 

  • Diaz I, Martinez M, Isabel-LaMoneda I, Rubio-Somoza I, Carbonero P (2005) The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development. Plant J 42:652–662

    CAS  PubMed  Google Scholar 

  • Diez CM, Trujillo I, Martinez-Urdiroz N, Barranco D, Rallo L, Marfil P, Gaut BS (2015) Olive domestication and diversification in the Mediterranean Basin. New Phytol 206:436–447

    CAS  PubMed  Google Scholar 

  • Dong G, Ni Z, Yao Y, Nie X, Sun Q (2007) Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Mol Biol 63:73–84

    CAS  PubMed  Google Scholar 

  • Dong C, Hu H, Xie J (2016) Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Genome 59:1085–1100

    CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    CAS  PubMed  Google Scholar 

  • Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Rühl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    CAS  PubMed  Google Scholar 

  • Gardiner J, Sherr I, Scarpella E (2010) Expression of DOF genes identifies early stages of vascular development in Arabidopsis leaves. Int J Dev Biol 54(8–9):1389–1396

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Springer, Berlin, pp 571–607

    Google Scholar 

  • Goodstein D, Batra S, Carlson J, Hayes R, Phillips J, Shu S, Schmutz J, Rokhsar D (2014) Phytozome comparative plant genomics portal

  • Gu X, Zou Y, Su Z, Huang W, Zhou Z, Arendsee Z, Zeng Y (2013) An update of DIVERGE software for functional divergence analysis of protein family. Mol Biol Evol 30:1713–1719

    CAS  PubMed  Google Scholar 

  • Guo Y (2009) Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell 21:3518–3534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht NC, Singh V, Yadav D (2015) Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. Planta 241:549–562

    CAS  PubMed  Google Scholar 

  • Hernando-Amado S, Gonzalez-Calle V, Carbonero P, Barrero-Sicilia C (2012) The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC Plant Biol 12:202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Nakai K (2006) Protein subcellular localization prediction with WoLF PSORT. In: Proceedings of the 4th Asia-Pacific bioinformatics conference. World Scientific, Singapore, pp 39–48

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 9:486–487

    Google Scholar 

  • Imaizumi T (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    CAS  PubMed  Google Scholar 

  • Iwamoto M, Tagiri A (2016) Micro RNA-targeted transcription factor gene RDD 1 promotes nutrient ion uptake and accumulation in rice. Plant J 85(4):466–477

    CAS  PubMed  Google Scholar 

  • Jones DM, Vandepoele K (2020) Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Curr Opin Plant Biol 54:42–48

    CAS  PubMed  Google Scholar 

  • Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    CAS  PubMed  Google Scholar 

  • Jung JH, Lee S, Yun J, Lee M, Park CM (2014) The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Sci 215–216:29–38

    PubMed  Google Scholar 

  • Kang W-H, Kim S, Lee H-A, Choi D, Yeom S-I (2016) Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci Rep 6:33332

    PubMed  PubMed Central  Google Scholar 

  • Kassa A, Konrad H, Geburek T (2019) Molecular diversity and gene flow within and among different subspecies of the wild olive (Olea europaea L.): a review. Flora 250:18–26

    Google Scholar 

  • Kim BH, Kwon Y, Lee BH, Nam KH (2014) Overexpression of miR172 suppresses the brassinosteroid signaling defects of bak1 in Arabidopsis. Biochem Biophys Res Commun 447:479–484

    CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2007) Sequential activation of two Dof transcription factor gene promoters during vascular development in Arabidopsis thaliana. Plant Physiol Biochem 45(8):623–629

    CAS  PubMed  Google Scholar 

  • Koralewski TE, Krutovsky KV (2011) Evolution of exon–intron structure and alternative splicing. PLoS ONE 6:e18055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakopoulou CI, Kalogianni DP (2020) Genetic identification of the wild form of olive (Olea europaea var. sylvestris) using allele-specific real-time PCR. Foods 9:467

    CAS  PubMed Central  Google Scholar 

  • Lafka T-I, Lazou AE, Sinanoglou VJ, Lazos ES (2013) Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods 2:18–31

    PubMed  PubMed Central  Google Scholar 

  • Li W, Wang T, Zhang Y, Li Y (2016) Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 67:175–194

    CAS  PubMed  Google Scholar 

  • Lijavetzky D, Carbonero P, Vicente-Carbajosa J (2003a) Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 3:17

    PubMed  PubMed Central  Google Scholar 

  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268

    CAS  PubMed  Google Scholar 

  • Lumaret R, Ouazzani N (2001) Plant genetics. Ancient wild olives in Mediterranean forests. Nature 413:700

    CAS  PubMed  Google Scholar 

  • Ma J, Li M-Y, Wang F, Tang J, Xiong A-S (2015) Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genomics 16:33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malviya N, Gupta S, Singh V, Yadav M, Bisht N, Sarangi B, Yadav D (2015) Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L.) Millsp.). Mol Biol Rep 42:535–552

    CAS  PubMed  Google Scholar 

  • Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol 130:111–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO, Mellor N, Help-Rinta-Rahko H, Otero S, Smet W, Boekschoten M (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565(7740):490–494

    CAS  PubMed  Google Scholar 

  • Mohamed R, Pineda M, Aguilar M (2007) Antioxidant capacity of extracts from wild and crop plants of the Mediterranean region. J Food Sci 72:S059–S063

    PubMed  Google Scholar 

  • Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128

    CAS  PubMed  Google Scholar 

  • Moreno-Risueno MA, Martinez M, Vicente-Carbajosa J, Carbonero P (2007) The family of DOF transcription factors: from green unicellular algae to vascular plants. Mol Genet Genomics 277:379–390

    CAS  PubMed  Google Scholar 

  • Morgan CC, Loughran NB, Walsh TA, Harrison AJ, O’Connell MJ (2010) Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins. BMC Evol Biol 10:39

    PubMed  PubMed Central  Google Scholar 

  • Nasim J, Malviya N, Kumar R, Yadav D (2016) Genome-wide bioinformatics analysis of Dof transcription factor gene family of chickpea and its comparative phylogenetic assessment with Arabidopsis and rice. Plant Syst Evol 302:1009–1026

    CAS  Google Scholar 

  • Negi J, Moriwaki K, Konishi M, Yokoyama R, Nakano T, Kusumi K, Hashimoto-Sugimoto M, Schroeder JI, Nishitani K, Yanagisawa S (2013) A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis. Curr Biol 23:479–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noguero M, Atif RM, Ochatt S, Thompson RD (2013) The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci 209:32–45

    CAS  PubMed  Google Scholar 

  • Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paudel S, Magrati T, Lamichhane JR (2011) Antimicrobial activity of wild olive crude extracts in vitro. Int J Pharma Sci Res 2:110–113

    Google Scholar 

  • Peng FY, Weselake RJ (2011) Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genomics 12:286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Parra E, Perianez-Rodriguez J, Navarro-Neila S, Gude I, Moreno-Risueno MA, Del Pozo JC (2017) The transcription factor OBP4 controls root growth and promotes callus formation. New Phytol 213:1787–1801

    CAS  PubMed  Google Scholar 

  • Ramírez-Tejero JA, Jiménez-Ruiz J, Leyva-Pérez MD, Barroso JB, Luque F (2020) Gene expression pattern in olive tree organs (Olea europaea L.). Genes 11(5):544

    PubMed Central  Google Scholar 

  • Rombauts S, Déhais P, Van Montagu M, Rouzé P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rymen B, Kawamura A, Schafer S, Breuer C, Iwase A, Shibata M, Ikeda M, Mitsuda N, Koncz C, Ohme-Takagi M, Matsui M, Sugimoto K (2017) ABA suppresses root hair growth via the OBP4 transcriptional regulator. Plant Physiol 173:1750–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samad AF, Sajad M, Nazaruddin N, Fauzi IA, Murad A, Zainal Z, Ismail I (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565

    PubMed  PubMed Central  Google Scholar 

  • Song A, Gao T, Li P, Chen S, Guan Z, Wu D, Xin J, Fan Q, Zhao K, Chen F (2016) Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium. Front Plant Sci 7:199

    PubMed  PubMed Central  Google Scholar 

  • Spanudakis E, Jackson S (2014) The role of microRNAs in the control of flowering time. J Exp Bot 65(2):365–380

    CAS  PubMed  Google Scholar 

  • Sun Z, Guo T, Liu Y, Liu Q, Fang Y (2015) The roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary microRNAs. PLoS Genet 11:e1005598

    PubMed  PubMed Central  Google Scholar 

  • Takano M, Haque MA, Odaira S, Nakata K, Sasaki N, Nyunoya H (2013) Overexpression of a tobacco Dof transcription factor BBF1 stimulates the transcription of the tobacco mosaic virus resistance gene N and defense-related responses including ROS production. Plant Biotechnol. https://doi.org/10.5511/plantbiotechnology.12.1207a

    Article  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    CAS  PubMed  Google Scholar 

  • Terzi LC (2008) Regulation of flowering time by RNA processing. Springer, Berlin

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2003) Multiple sequence alignment using ClustalW and ClustalX. Curr Protocols Bioinform 1:2–3

    Google Scholar 

  • Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, Yang M, He L, Deng T, Escalante FJ (2017) Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci 114:E9413–E9422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesh J, Park SW (2015) Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato. Plant Physiol Biochem 94:73–85

    CAS  PubMed  Google Scholar 

  • Wang Y, Fu B, Pan L, Chen L, Fu X, Li K (2013a) Overexpression of Arabidopsis Dof1, GS1 and GS2 enhanced nitrogen assimilation in transgenic tobacco grown under low-nitrogen conditions. Plant Mol Biol Report 31:886–900

    CAS  Google Scholar 

  • Wang Y, Li J, Paterson AH (2013b) MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 29:1458–1460

    CAS  PubMed  Google Scholar 

  • Wei Q, Wang W, Hu T, Hu H, Mao W, Zhu Q, Bao C (2018) Genome-wide identification and characterization of Dof transcription factors in eggplant (Solanum melongena L.). PeerJ 6:e4481

    PubMed  PubMed Central  Google Scholar 

  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2:e117

    PubMed  PubMed Central  Google Scholar 

  • Wen CL, Cheng Q, Zhao L, Mao A, Yang J, Yu S, Weng Y, Xu Y (2016) Identification and characterisation of Dof transcription factors in the cucumber genome. Sci Rep 6:23072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Fu L, Yi H (2016a) Genome-wide identification of the transcription factors involved in citrus fruit ripening from the transcriptomes of a late-ripening sweet orange mutant and its wild Type. PLoS ONE 11:e0154330

    PubMed  PubMed Central  Google Scholar 

  • Wu Z, Cheng J, Cui J, Xu X, Liang G, Luo X, Chen X, Tang X, Hu K, Qin C (2016b) Genome-wide identification and expression profile of Dof transcription factor gene family in pepper (Capsicum annuum L.). Front Plant Sci 7:574

    PubMed  PubMed Central  Google Scholar 

  • Xu P, Cai W (2019) Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in Arabidopsis thaliana. PLoS Genet 15:e1008465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Chen H, Ying L, Cai W (2016) AtDOF5.4/OBP4, a DOF transcription factor gene that negatively regulates cell cycle progression and cell expansion in Arabidopsis thaliana. Sci Rep 6:27705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashino T, Yamawaki S, Hagui E, Ishida K, Ueoka-Nakanishi H, Nakamichi N, Mizuno T (2013) Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus II: characterization of a microRNA implicated in the control of flowering time. Biosci Biotechnol Biochem 77:1179–1185

    CAS  PubMed  Google Scholar 

  • Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci 7:555–560

    CAS  PubMed  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    CAS  PubMed  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci 101:7833–7838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Tuskan GA (2006) Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 142:820–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yang M-F, Zhang W-P, Chen F, Shen S-H (2011) A putative flowering-time-related Dof transcription factor gene, JcDof3, is controlled by the circadian clock in Jatropha curcas. Plant Sci 181:667–674

    CAS  PubMed  Google Scholar 

  • Yang FX, Zhu GF, Wang Z, Liu HL, Huang D (2015) A putative miR172-targeted CeAPETALA2-like gene is involved in floral patterning regulation of the orchid Cymbidium ensifolium. Genet Mol Res 14:12049–12061

    CAS  PubMed  Google Scholar 

  • Zou HF, Zhang YQ, Wei W, Chen HW, Song QX, Liu YF, Zhao MY, Wang F, Zhang BC, Lin Q (2013) The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem J 449:373–388

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of the Punjab, Lahore, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

MS, M, MH, SAAAA, RMA, NA, MAJ and FG were involved in data analysis. MS and RMA provided overall direction and experimental design. SAAAA, MH, NA and M wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Shafiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Seon-In Yeom, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariyam, Shafiq, M., Haseeb, M. et al. Genome-wide identification and characterization of a plant-specific Dof transcription factor gene family in olive (Olea europaea) and its comparison with Arabidopsis. Hortic. Environ. Biotechnol. 62, 949–968 (2021). https://doi.org/10.1007/s13580-021-00366-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-021-00366-7

Keywords

Navigation