Skip to main content
Log in

Drought tolerance induction in transgenic tobacco through RNA interference of BrDST71, a drought-responsive gene from Chinese cabbage

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Because drought is a major environmental factor that causes serious agricultural problems, understanding the mechanisms and genetic bases underlying plant responses to drought stress is essential. Using the Brassica rapa 135 K microarray, BrDST71 gene was identified. BrDST71 expression in drought-tolerant Chinese cabbage showed an eight-fold decrease than in wild-type, and encodes a 362 amino acid protein containing a secretory peroxidase domain. Overexpression and RNAi vectors of BrDST71 were constructed and each vector was transformed into Nicotiana tabacum by the Agrobacterium-mediated transformation method. The expression level of BrDST71 and the phenotype were analyzed under drought condition. Transgenic lines with suppressed expression of BrDST71 showed more tolerance to drought stress compared to wild-type and overexpression transgenic lines. It showed that suppressing BrDST71 expression is correlated to better growth under drought conditions. Based on these results, we suggest that down-regulation of BrDST71 improves drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albacete AA, Martínez-Andújar C, Pérez-Alfocea F (2014) Hormonal and metabolic regulation of source–sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32:12–30

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Ros LG, Belchi-Navarro S, Bru R, Ros BA, Pedreño MA (2009) Class III peroxidases in plant defense reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    Article  CAS  PubMed  Google Scholar 

  • Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Beemster GT (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol 169:1382–1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr Opin Biotech 26:62–70

    Article  CAS  PubMed  Google Scholar 

  • Csiszár J, Gallé Á, Horváth E, Dancsó P, Gombos M, Váry Z, Erdeia L, Györgyey J, Tari I (2012) Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiol Biochem 52:119–129

    Article  CAS  PubMed  Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Kim HS, Kim SH, Park YD (2004) Analysis of T-DNA integration patterns in transgenic tobacco plants. J Plant Biol 47:179–186

    Article  CAS  Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur YK, Park BS (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24 K oligo microarray. Mol Cells 26:595–605

    CAS  PubMed  Google Scholar 

  • Lee GH, Lee GS, Yu JG, Kim YH, Park YD (2018) Correlation network analysis of abiotic stress related genes reveals the coordinated regulation of transcription in Chinese cabbage. Hortic Sci Technol 36:266–279

    Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Article  Google Scholar 

  • Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simões M, Dean JF (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genom 12:264

    Article  CAS  Google Scholar 

  • Lubovská Z, Dobrá J, Štorchová H, Wilhelmová N, Vanková R (2014) Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J Plant Physiol 171:1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180–191

    Article  Google Scholar 

  • Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed Central  PubMed  Google Scholar 

  • Park J-S, Yu J-G, Park Y-D (2017) Characterization of a drought tolerance-related gene of Chinese cabbage in a transgenic tobacco plant. Hortic Sci Technol 58(1):48–55

    CAS  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JA, Ferreira-Silva SL, Abreu-Neto J, Margis R, Margis-Pinheiro M (2010) Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71:548–558

    Article  CAS  PubMed  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water. Crop Sci 41:493–509

    Article  CAS  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  CAS  PubMed  Google Scholar 

  • Yadav RC, Solanke AU, Kumar P, Pattanayak D, Yadav NR, Kumar PA (2013) Genetic engineering for tolerance to climate change-related traits. In: Kole C (ed) Genomics and breeding for climate-resilient crops. Springer, Berlin, pp 285–330

    Chapter  Google Scholar 

  • Yao LM, Wang B, Cheng LJ, Wu TL (2013) Identification of key drought stress-related genes in the hyacinth bean. PLoS ONE 8:e58108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye T, Shi H, Wang Y, Chan Z (2015) Contrasting changes caused by drought and submergence stresses in Bermuda grass (Cynodon dactylon). Front Plant Sci 6:951

    PubMed  PubMed Central  Google Scholar 

  • Yu JG, Lee GH, Park YD (2016) Characterization of a drought-tolerance gene, BrDSR, in Chinese cabbage. Hortic Sci Technol 34:102–111

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01365201)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Doo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JS., Yu, JG., Lee, GH. et al. Drought tolerance induction in transgenic tobacco through RNA interference of BrDST71, a drought-responsive gene from Chinese cabbage. Hortic. Environ. Biotechnol. 59, 749–757 (2018). https://doi.org/10.1007/s13580-018-0070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0070-7

Keywords

Navigation