Skip to main content
Log in

Development of SNP markers using genotyping-by-sequencing for cultivar identification in rose (Rosa hybrida)

  • Research Reports
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we developed single nucleotide polymorphism (SNP) markers to identify cultivars of the polyploid Rosa hybrida using genotyping-by-sequencing (GBS). Sequences obtained from GBS libraries of the genomes of 79 rose cultivars were aligned to contigs created by de novo assembly, and these contigs ranged from 200 to 2,591 bp, with an average of 305 bp per contig. We selected 1,778 SNPs from 13,488 putative SNPs. SNP markers that were present in more than 70% of the 79 cultivars were selected and evaluated, both on the basis of polymorphism information content values and level of heterozygosity, and 20 SNP markers were ultimately selected for high- throughput analysis. From these 20 SNP markers, 4 were successfully converted to markers for DNA chip assays. High resolution melting analysis was carried out to further distinguish rose genotypes. Using a set of seven SNP markers, we identified 70.9% of the 79 rose cultivars, and 87.5% of the 16 new cultivars developed in Goyang City. This paper is the first to report the development of a SNP marker set to identify Rosa hybrida cultivars by GBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Australian Government (2009) The biology and ecology of Rosa x hybrida (rose). Department of health and ageing office of the gene technology regulator. Ver 2, pp.11

    Google Scholar 

  • Bang SW, Song K, Sim SC, Chung SM (2016) Marker-assisted selection for monoecy in chamoe (Cucumis melo L.). Korean J Hortic Sci Technol 34:134–141

    CAS  Google Scholar 

  • Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM, Muttoni G, Vaillancourt B, Buell CR, Kaeppler SM et al. (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers RL, Harker D, Yourstone SM, Maughan PJ, Udall JA (2012) Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 124:1201–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Debener T, Gudin S (2000) Rose: genetics and breeding. Plant Breed Rev 17:59–189

    Google Scholar 

  • Debener T, Linde M (2009) Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci 28:267–280

    Article  CAS  Google Scholar 

  • Doyle JJ and Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, v.19, pp 11–15

    Google Scholar 

  • Esselink GD, Smulders MJ, Vosman B (2003) Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theor Appl Genet 106:277–286

    Article  CAS  PubMed  Google Scholar 

  • Gar O, Sargent DJ, Tsai CJ, Pleban T, Shalev G, Byrne DH, Zamir D (2011) An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence. PLoS ONE 6:e20463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudin S (2003). Breeding. In: Roberts AV, Debener T, Gudin S, editors. eds. Encyclopedia of rose science. Oxford: Academic Press, pp 25–30

    Chapter  Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, H, Li Z (2014) Genotyping-bysequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5: 484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakawa H, Shirasawa K, Kosugi S, Tashiro K, Nakayama S, Yamada M, Kohara M, Watanabe A, Kishida Y et al. (2014) Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA res 21:169–181

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim DS, Park S, Lee HE, Ahn YK, Kim JH, Yang HB, Kang BC (2016) Development of a high-throughput SNP marker set by transcriptome sequencing to accelerate genetic background selection in Brassica rapa. Hortic Environ Biotechnol 57:280–290

    Article  CAS  Google Scholar 

  • Kimura T, Nishitani C, Iketani H, Ban Y, Yamamoto T (2006) Development of microsatellite markers in rose. Mol Ecol Notes 6:810–812

    Article  CAS  Google Scholar 

  • Koning-Boucoiran CF, Gitonga VW, Yan Z, Dolstra O, van der Linden CG, van der Schoot J, Uenk GE, Verlinden K, Smulders MJ et al. (2012) The mode of inheritance in tetraploid cut roses. Theor Appl Genet 125:591–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ (2014) Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. Hortic Res 1 doi:10.1038/hortres.2014.1

    Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, van Oeveren J et al. (2007) Complexity reduction of polymorphic sequences (CRoPS): A novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2:e1172

    Article  PubMed  PubMed Central  Google Scholar 

  • Park YH, Ahn SG, Choi YM, Oh HJ, Ahn DC, Kim JG, Kang JS, Choi YW, Jeong BR (2010) Rose (Rosa hybrida L.) EST-derived microsatellite markers and their transferability to strawberry (Fragaria spp.). Sci Hortic 125:733–739

    Article  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Methods for data analysis. In: Hamon P, Seguin M, Perrier X, Glazmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers, Inc and Cirad, Montpellier, pp 31–63

    Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by sequencing approach. PLoS ONE 7: e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scariot V, Akkak A, Botta R (2006) Characterization and genetic relationships of wild species and old garden roses based on microsatellite analysis. J Am Soc Hortic Sci 131:66–73

    CAS  Google Scholar 

  • Simon WB, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blazter ML (2011) Lingkage mapping comparative genomics using next generation RAD sequencing of a non model organism. PLoS ONE 6: e19315

    Article  Google Scholar 

  • Sparinska A, Zarina R, Rostoks N (2009) Diversity in Rosa rugosa × Rosa hybrida interspecific cultivars. Acta Hortic 836:111–116

    Article  CAS  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcger AL, Jaiswal P, Mockaitis K, Liston A et al. (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Vartia S, Villanueva-Canas JL, Finarelli J, Farrell ED, Collins PC, Hughes GM, Carlsson JE, Gauthier DT, McGinnity P et al (2016) A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. R Soc Open Sci 3:150565

    Article  PubMed  PubMed Central  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnahar SK, Troggio M et al. (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J et al. (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, SCAR and morphological markers. Theor Appl Genet 110:766–777

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Li C, Lam HM, Clements J, Yan G, Zhao S (2015) Sequencing consolidates molecular markers with plant breeding practice. Theor Appl Genet 128:779–795

    Article  CAS  PubMed  Google Scholar 

  • Zhang L (2003) Genetic linkage mapping in tetraploid and diploid rose. Dissertation, Clemson University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Cheorl Kang.

Electronic supplementary material

13580_2017_268_MOESM1_ESM.xlsx

Supplementary Table 1. Results of genotyping of rose cultivars using DNA chip assay and high-resolution melting (HRM) analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, MS., Han, K., Kwon, JK. et al. Development of SNP markers using genotyping-by-sequencing for cultivar identification in rose (Rosa hybrida). Hortic. Environ. Biotechnol. 58, 292–302 (2017). https://doi.org/10.1007/s13580-017-0268-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-017-0268-0

Additional key words

Navigation