Skip to main content
Log in

Cloning and characterization of the ammonium transporter genes BaAMT1;1 and BaAMT1;3 from Chinese kale

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Chinese kale (Brassica alboglabra L.) is a popular vegetable rich in important nutrients. Fertilization with appropriate ammonium:nitrate ratios enhances biomass production and quality. AMT-type ammonium transporters have been shown to mediate ammonium uptake across the plasma membrane. However, very little is known about the molecular regulation of growth and development by ammonium in Chinese kale, including how ammonium regulates the expression of AMT1 genes. In this study, we identified and characterized two AMT1 genes from B. alboglabra, BaAMT1;1 and BaAMT1;3. The full-length open reading frames of BaAMT1;1 and BaAMT1;3 were 1512 bp and 1515 bp, respectively. Transient expression of the fusion proteins pBE-EGFP-BaAMT1;1 and pBE-EGFP-BaAMT1;3 in onion epidermal cells indicated that these transporters are located on the plasma membrane. BaAMT1;1 and BaAMT1;3 were functional in yeast and complemented a mutant defective in ammonium transport. BaAMT1;1 was expressed in vegetative organs and at high levels in roots, while BaAMT1;3 expression was root specific. In addition, we observed opposite responses of BaAMT1;1 and BaAMT1;3 expression to nitrogen starvation and ammonium resupply in roots. These results provide new insights into the molecular mechanisms underlying ammonium absorption in Chinese kale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agatep R, Kirkpatrick RD, Parchaliuk DL, Woods RA, Gietz RD (1998) Transformation of Saccharomyces cerevisiae by the lithium acetate/single-stranded carrier DNA/polyethylene glycol protocol. Tech Tips Online 3:133–137

    Article  Google Scholar 

  • Dickson RW, Fisher PR, Argo WR, Jacques DJ, Sartain JB, Trenholm LE, Yeager TH (2016) Solution Ammonium: Nitrate ratio and cation/anion uptake affect acidity or basicity with floriculture species in hydroponics. Sci Hortic 200:36–44

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engineer CB, Kranz RG (2007) Reciprocal leaf and root expression of AtAmt1. 1 and root architectural changes in response to nitrogen deficiency. Plant Physiol 143:236–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and deficiency-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass AD, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  PubMed  Google Scholar 

  • Gu R, Duan F, An X, Zhang F, von Wirén N, Yuan L (2013) Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol 54:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Ballester D, Camargo A, Fernández E (2004) Ammonium transporter genes in Chlamydomonas: the nitrate-specific regulatory gene Nit2 is involved in Amt1;1 expression. Plant Mol Biol 56:863–878

    Article  CAS  PubMed  Google Scholar 

  • Howitt SM, Udvardi MK (2000) Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta-Biomembr 1465:152–170

    Article  CAS  Google Scholar 

  • Hu L, Yu J, Liao W, Zhang G, Xie J, Lv J, Bu R (2015) Moderate ammonium: nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Sci Hortic 186:143–153

    Article  CAS  Google Scholar 

  • Javelle A, Severi E, Thornton J, Merrick M (2004). Ammonium Sensing in Escherichia coli role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J Biol Chem 279:8530–8538

    Article  CAS  PubMed  Google Scholar 

  • Kaiser BN, Rawat SR, Siddiqi MY, Masle J, Glass AD (2002) Functional analysis of an Arabidopsis T-DNA “knockout” of the high-affinity NH4 + transporter AtAMT1; 1. Plant Physiol 130:1263–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass AD (1996) Kinetics of NH4 + influx in spruce. Plant Physiol 110:773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Frommer WB (2010) Adjusting ammonium uptake via phosphorylation. Plant Signaling Behav 5:736–738

    Article  CAS  Google Scholar 

  • Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, Lalondea S, Schulzed WX, von Wirénc N, Frommer WB (2009). Feedback inhibition of ammonium uptake by a phosphodependent allosteric mechanism in Arabidopsis. Plant Cell 21:3610–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauter FR, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB (1996) Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. P Natl Acad Sci USA 93:8139–8144

    Article  CAS  Google Scholar 

  • Li H, Cong Y, Lin J, Chang YH (2015) Molecular cloning and identification of an ammonium transporter gene from pear. Plant Cell Tiss Org 120:441–451

    Article  CAS  Google Scholar 

  • Lima JE, Kojima S, Takahashi H, von Wirén N (2010). Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1; 3-dependent manner. Plant Cell 22:3621–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, & Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loqué D, Yuan L, Kojima S, Gojon A, Wirth J, Gazzarrini S, Von Wirén N (2006) Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 48:522–534

    PubMed  Google Scholar 

  • Marini A M, Soussi-Boudekou S, Vissers S, André B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Method Mol Cell Biol 17:4282–4293

    Article  CAS  Google Scholar 

  • Mayer M, Ludewig U (2006) Role of AMT1;1 in NH4 + acquisition in Arabidopsis thaliana. Plant Biol 8:522–528

    Article  CAS  PubMed  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    Article  CAS  PubMed  Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high affinity NH4 + transporter from plants. EMBO J 13:3464–3471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson JN, Finnemann J, Schjoerring JK (2002). Regulation of the high-affinity ammonium transporter (BnAMT1;2) in the leaves of Brassica napus by nitrogen status. Plant Mol Biol 49:483–490

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, El-kereamy A, Gidda S, Bi YM, Rothstein SJ (2014). AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions. J Exp Biol 65:965–979

    CAS  Google Scholar 

  • Saier MH (1999) Genome archeology leading to the characterization and classification of transport proteins. Curr Opin Microbiol 2:555–561

    Article  CAS  PubMed  Google Scholar 

  • Salvemini F, Marini AM, Riccio A, Patriarca EJ, Chiurazzi M (2001) Functional characterization of an ammonium transporter gene from Lotusjaponicus. Gene 270:237–243

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK (2002) Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol 130:1788–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song SW, Liao GX, Liu HC, Sun GW, Chen RY (2012a) Effect of Ammonium and Nitrate Ratio on Nutritional Quality of Chinese Kale. Adv Mat Res 461:13–16

    Article  CAS  Google Scholar 

  • Song SW, Li HD, Chen RY, Sun GW, Liu HC (2012b) Effect of biological organic fertilizer on plant growth and yield of Chinese kale. Appl Mech Mater 142:175–179

    Article  CAS  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J (2003a) Distinct expression and function of three ammonium transporter genes (OsAMT1; 1-1; 3) in rice. Plant Cell Physiol 44:726–734

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J (2003b) Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol 44:1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Wang C, Huang J, Zhang J, Mao Z, Wang H (2013) Comparative analysis of peroxidase profiles in Chinese kale (Brassica alboglabra L.): Evaluation of leaf growth related isozymes. Food Chem 136:632–635

    Article  CAS  PubMed  Google Scholar 

  • Ullrich WR, Larsson M, Larsson CM, Lesch S, Novacky A (1984) Ammonium uptake in Lemna gibba G 1, related membrane potential changes, and inhibition of anion uptake. Physiol Plantarum 61:369–376

    Article  CAS  Google Scholar 

  • Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265

    Article  PubMed  Google Scholar 

  • Wang JW, Wang HQ, Xiang WW, Chai TY (2014) A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.). Genet Mol Res 13:3615–3626

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhao Y, Luo W, Li R, He Q, Fang X, Lin J (2013) Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1; 3 by clustering and internalization. P Natl Acad Sci USA 110:13204–13209

    Article  CAS  Google Scholar 

  • Yan D, Dai J, Wu Q (2013) Characterization of an ammonium transporter in the oleaginous alga Chlorella protothecoides. Appl Microbiol Biotechnol Biot 97:919–928

    Article  CAS  Google Scholar 

  • Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, von Wirén N (2007a) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19:2636–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Loqué D, Ye F, Frommer WB, von Wirén N (2007b) Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1; 1. Plant Physiol 143:732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Graff L, Loqué D, Kojima S, Tsuchiya YN, Takahashi H, von Wirén N (2009) AtAMT1; 4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant Cell Physiol 50:13–25

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhu J, Cao HZ, An YR, Huang JJ, Chen XH, Luo ZY (2013) Molecular cloning and expression analysis of PDR1-like gene in ginseng subjected to salt and cold stresses or hormonal treatment. Plant Physiol Bioch 71:203–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riyuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., He, Z., Huang, X. et al. Cloning and characterization of the ammonium transporter genes BaAMT1;1 and BaAMT1;3 from Chinese kale. Hortic. Environ. Biotechnol. 58, 178–186 (2017). https://doi.org/10.1007/s13580-017-0168-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-017-0168-3

Additional key words

Navigation